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ABSTRACT 
As a typical representative of infrastructure, tunnels are indispensable carriers for the normal operation 
of cities, with their safe and efficient operation directly influencing urban efficiency. However, the vari
ous data supporting tunnel operation and maintenance (O&M) exhibit significant diverse sources and 
structural differences, which pose substantial challenges to tasks such as tunnel structural health 
assessment. To address these challenges, this paper proposes an ontology-based multi-source hetero
geneous O&M data integration framework to support the assessment of tunnel structural health, 
thereby improving decision-making efficiency in tunnel maintenance. The framework consists of four 
layers: data layer, ontology layer, mapping layer, and application layer, enabling the unified modeling, 
integration, and comprehensive application of multi-source heterogeneous tunnel O&M data. 
Additionally, the proposed framework is applied to a practical engineering project, the Tanglang 
Mountain Tunnel. Compared with existing methods, the framework demonstrates improvements in 
data fusion accuracy, data completeness, and operational efficiency.
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1. Introduction

With the continuous advancement of urbanization, the scale 
of tunnels has been expanding, gradually becoming an indis
pensable component for the normal operation of cities. 
However, compared to the vast scale of tunnel construction, 
the level of tunnel operation and maintenance (O&M) man
agement remains relatively low, resulting in significant defi
ciencies in both safety and efficiency. Issues such as the 
diversity of O&M data sources and their low levels of inte
grated utilization expose critical gaps in tunnel O&M 
management.

The O&M process of tunnels generates amounts of data 
resources, including various models retained during the 
design phase, monitoring data for structural health, as well 
as resource data such as documents, images, and videos 
accumulated during the maintenance phase. These data are 
often stored in different databases, file systems, or hardware 
devices, originating from diverse sources and structural dif
ferences, which pose significant challenges for tunnel O&M 
management (Leng et al., 2020). Therefore, one key issue in 
the tunnel O&M process is how to integrate and utilize 
these heterogeneous data to support applications such as 
tunnel structural health assessment.

Currently, numerous methodologies exist for the integra
tion and fusion of heterogeneous data. Traditional data 

fusion methods primarily focus on the integration of data 
from multiple sensors, including adaptive weighting 
approaches (Pan et al., 2020), Bayesian methods (Wang 
et al., 2018; Yoon & Yu, 2017), Kalman filtering (Ma et al., 
2022), fuzzy theory (Zhang et al., 2014), and Dempster- 
Shafer evidence theory (Denœux, 2016). While these meth
ods address the heterogeneity issues among similar data 
sources, their effectiveness diminishes when applied to data 
with significant structural and format differences. 
Specifically, traditional data fusion methods are unable to 
extract semantic information from multi-source heteroge
neous data and lack the ability to infer new knowledge from 
existing data, thereby impeding the achievement of more 
profound semantic fusion.

With the rapid development of the semantic web (Pauwels 
et al., 2017) and knowledge engineering (K€ugler et al., 2023), 
the concept of ontology has entered the forefront of atten
tion. Ontology, owing to its semantic consistency, robust data 
integration capabilities, and data inference functionalities, 
presents a more precise, consistent, and intelligent approach 
to handling and querying data. Garnering widespread atten
tion from researchers, ontology demonstrates significant 
advantages in integrating semantic information from hetero
geneous data. Originally a concept in philosophy, ontology 
was later introduced into the realms of artificial intelligence 
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and information science. In 1993, Gruber from Stanford 
University’s Knowledge Systems Laboratory defined ontology 
as “an explicit specification or representation of a con
ceptualization” (Gruber, 1993). It describes knowledge at the 
semantic level, serving as a universal conceptual model for 
domain knowledge (Pardo et al., 2012). By establishing ontol
ogies for various heterogeneous data (Le & David Jeong, 
2016; Venugopal et al., 2015), semantic information inter
change and fusion among data with different structures can 
be achieved (Mignard & Nicolle, 2014).

Against the above backdrop, this paper presents an 
ontology-based multi-source heterogeneous O&M data inte
gration framework to support tunnel structural health 
assessment, thereby facilitating tunnel maintenance. The 
framework comprises four layers: 1) Data layer: Data col
lected during tunnel O&M processes is categorized, with 
methods for associating each category with the ontology 
provided. 2) Ontology layer: Various approaches are 
employed to develop ontologies for different types of O&M 
data. 3) Mapping layer: Ontology mapping is used to estab
lish relationships between the different ontologies. 4) 
Application layer: Based on the tunnel O&M data fusion 
model, the structural health status of the tunnel structure is 
assessed. Additionally, a practical engineering project is uti
lized to validate the framework’s effectiveness. The main 
contributions of this paper are as follows:

1. Various ontologies are developed for multi-source het
erogeneous O&M data in tunnel maintenance. 
Compared to previous studies, these ontologies incorp
orate a broader spectrum of data types relevant to the 
tunnel O&M phase and are directly associated with 
real-world data, thereby achieving unification at both 
the data and ontology layers.

2. An ontology mapping method is proposed based on 
concept similarity and local confidence, which calculates 
similarity from different aspects. By comprehensively 
considering the different semantic features of the ontol
ogies, the mapping relationships are established, ultim
ately forming a cohesive integration model for 
heterogeneous data.

3. Building on the integrated tunnel O&M data model, a 
tunnel structural health assessment strategy is proposed. 
This strategy leverages ontologies to extract various 
types of tunnel O&M data and employs a comprehen
sive approach to assess the structural health of tunnels, 
thereby mitigating the potential decision-making errors 
associated with reliance on single-source data.

The remainder of this study is organized as follows. In 
section 2, the relevant research on ontology modeling, 
ontology mapping, and tunnel structural health assessment 
is introduced. Section 3 presents the proposed ontology 
framework, along with its detailed components. Section 4
validates the framework through a case study, providing a 
comparison with other methods and a discussion of the 
results. Finally, section 5 concludes the study while elaborat
ing on future work.

2. Literature review

2.1. Ontology modeling in infrastructure domain

Nowadays, numerous ontologies tailored to various hetero
geneous data have been developed, including IfcOWL ontol
ogy for Building Information Modeling (BIM) data (Pauwels 
& Terkaj, 2016), SSN for monitoring data, and Building 
Topology Ontology (BOT) for architectural topological 
information (Rasmussen et al., 2017). In addition to the 
development of ontologies for individual data types, many 
scholars are now focusing on ontologies for various data 
types in the infrastructure domain to facilitate compelling 
correlation and interaction among heterogeneous data. One 
approach is to develop a reference ontology. For instance, 
Deng et al. (2016) developed a reference ontology called 
Semantic City Model, which includes all entities and attrib
utes of the BIM data standard Industry Foundation Classes 
(IFC) and the Geographic Information System (GIS) data 
standard City Geographic Markup Language (CityGML). By 
establishing mapping relationships between the Semantic 
City Model and the original schema, effective integration of 
BIM and GIS can be achieved. In the field of building fire 
protection, Jiang et al. (2023) developed an ontology model 
for building fire protection (BFP), organizing, classifying, 
and connecting various entities from four aspects: system, 
device, operation, and construction. This model serves as a 
bridge linking the geometric information of buildings with 
sensor data, thereby integrating geometric information with 
fire monitoring sensor information and providing data sup
port for subsequent fire protection systems.

Another approach involves associating and mapping con
cepts from different data domain ontologies to develop a 
comprehensive ontology for heterogeneous data fusion. For 
instance, Hor et al. (2016) developed corresponding ontolo
gies based on the attributes and relationships of IFC and 
CityGML. They then utilized ontology mapping methods to 
identify similar concepts and relationships, thereby achiev
ing the integration of BIM and GIS ontology models. Shi 
et al. (2023) developed an ontology for City Information 
Modeling (CIM) to integrate BIM, CIM, and Internet of 
Things (IoT) data. This ontology comprises two parts: ini
tially developing an ontology for BIM-GIS integration, fol
lowed by associating dynamic IoT monitoring data with it, 
thereby forming a comprehensive city information model.

The previous methods have facilitated the effective inte
gration of heterogeneous data ontologies. However, several 
challenges persist in the application of ontologies. Currently, 
there is a lack of relevant O&M data ontologies in the tun
nel domain, and the methods for ontology modeling of dif
ferent O&M data types in tunnels lack systematic research. 
Additionally, most current ontology models involve simplis
tic data modeling, lacking in-depth comprehension and 
application capability.

2.2. Ontology mapping methods and systems

In the field of data fusion, the integration of large amounts 
of multi-source heterogeneous data is often involved, and a 
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single ontology is generally insufficient to cover various het
erogeneous data types. Therefore, establishing effective asso
ciations between different O&M data ontologies through 
ontology mapping is considered a practical approach. 
Numerous studies have applied various ontology mapping 
methods to integrate ontologies from different domains. 
Based on research analysis, related studies can be catego
rized into four types:

1. Ontology semantic similarity matching method: This 
approach compares the semantic similarity of different 
ontology concepts to identify the relationships between 
heterogeneous ontologies. OntoDNA is an ontology 
mapping system focused on dynamically addressing 
semantic inconsistencies between ontologies by treating 
ontology concepts as DNA sequences for similarity cal
culation (Kiu & Lee, 2006).

2. Ontology structural similarity matching method: This 
method analyzes the structural relationships between 
different ontologies to discover existing mapping rules. 
For instance, Huang and Zhao (2020) proposed a 
semantic processing-based ontology structural similarity 
calculation method, which measures the similarity 
between different concept nodes based on their seman
tic distance in the ontology. Falcon combined lexical 
similarity and structural similarity matching strategies, 
identifying mapping relationships by analyzing class 
and attribute names, definitions, and their structural 
relationships in the ontology (W. Hu & Qu, 2008).

3. Ontology instance matching method: This approach uti
lizes the instance data of ontologies and algorithms 
such as machine learning to find mapping relationships 
between ontologies. GLUE is an instance-based ontol
ogy mapping system that applies machine learning to 
discover mapping relationships between ontologies, 
evaluating the similarity between concepts from mul
tiple perspectives to achieve more accurate mapping 
results (Doan, 2002).

4. Comprehensive method: These methods integrate the 
above approaches to identify mapping relationships 
between ontologies. ASMOV is an ontology mapping 
system that combines multiple similarity measurement 
methods, including text similarity, structural similarity, 
and semantic similarity, to assess the similarity between 
concepts in two ontologies from multiple angles (Jean- 
Mary et al., 2009). RiMOM is an ontology mapping sys
tem based on Bayesian decision theory, which trans
forms the ontology mapping discovery problem into a 
minimal risk decision problem (J. Li et al., 2009). It 
incorporates multiple strategies, including string-based, 
structural, and semantic-based methods, to improve 
mapping accuracy from different dimensions.

This paper draws on the strengths of previous ontology 
mapping methods and systems, considering ontology simi
larity at different levels, including concepts, instances, and 
structures. It dynamically adjusts the weights of different 
strategies based on the characteristics of different ontologies, 

thereby improving the accuracy and stability of the align
ment between various O&M data ontologies.

2.3. Tunnel structural health assessment

Due to the diversity of monitoring data collected from oper
ational tunnels, it is necessary to establish a comprehensive 
health indicator evaluation system to assess tunnel structural 
health status. In the late twentieth century, Einstein et al. 
(1995) first introduced risk assessment theory into tunnel 
engineering. They integrated various construction uncertain
ties and environmental uncertainties into consideration, 
establishing tunnel cost models and tunnel risk decision 
support systems. This provided theoretical guidance for tun
nel risk assessment research. Subsequently, Kampmann et al. 
(1998) further proposed a classification system for tunnel 
engineering based on this foundation. Using the 
Copenhagen Metro project as a case study, they employed 
the Monte Carlo method to establish a tunnel risk assess
ment model and conducted qualitative analysis on the likeli
hood of accidents. However, during this period, tunnel 
health assessment methods primarily relied on qualitative 
research, lacking the introduction of quantitative evaluation 
indicators. Such approaches no longer suffice to meet the 
needs of personnel for tunnel structural health assessment.

The analytic hierarchy process (AHP) offers a solution 
for quantifying the weights of different indicators. AHP, a 
quantitative analysis method for complex decision-making 
problems, was proposed by American scholar Thomas Saaty. 
It has been applied in some tunnel health assessments, miti
gating the influence of subjective factors to some extent 
(Hyun et al., 2015). However, its reliance on domain experts 
to rate different indicators limits its practical application in 
engineering projects. To address this limitation, fuzzy theory 
has been introduced into tunnel structural health assess
ment. By calculating the membership degrees of different 
indicators for various health levels, fuzzy theory provides a 
more objective reflection of actual health conditions.

For instance, Khademi Hamidi et al. (2010) utilized 
expert surveys and fuzzy AHP to propose solutions for risk 
management in tunnel design, construction, and operation 
using the Resalat Tunnel as a background. Zhang et al. 
(2014), based on a comprehensive evaluation model using 
fuzzy AHP, integrated different types of sensor data into the 
health grading of shield tunnels to assess tunnel safety con
ditions. Ren et al. (2023) designed a five-level evaluation 
index system according to common sensor layouts in shield 
tunnels, establishing corresponding multi-level health evalu
ation factor sets to assess the structural health of different 
tunnel monitoring locations. Ke et al. (2015) proposed a 
specialized fuzzy AHP comprehensive evaluation model, 
constructing a six-level indicator evaluation system for 
health monitoring data. These studies, incorporating fuzzy 
theory, have achieved graded assessment of tunnel structural 
health, becoming commonly used evaluation strategies 
today.

Building upon the previous research, this study simplifies 
the hierarchical division of tunnels by incorporating 
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commonly observed monitor indicators, facilitating practical 
applications in engineering. Additionally, by developing 
ontologies for heterogeneous tunnel O&M data, this paper 
integrates heterogeneous data to assess the health status of 
the tunnel structure, thereby aiding in the selection of sub
sequent tunnel O&M strategies.

3. The proposed framework based on ontology

To integrate and utilize various data for tunnel structural 
health assessment, this paper proposes a framework based 
on ontologies for tunnel heterogeneous information model
ing, ontology mapping, and structural health assessment. As 
illustrated in Figure 1, the overall framework consists of 
four layers: data layer, ontology layer, mapping layer, and 
application layer. The data layer encompasses the commonly 
used data in tunnel O&M processes, including BIM data, 
GIS data, monitoring data, text data, and image data. The 
ontology layer primarily focuses on the conceptual defini
tions and developing methods of the BIM data ontology, 
GIS data ontology, monitoring data ontology, text data 
ontology, and image data ontology. The ontology layer is 
linked to the data layer through various transformation 

methods. The mapping layer calculates the comprehensive 
similarity between different ontologies using concept simi
larity and local confidence, thereby establishing connections 
among different ontologies. The application layer leverages 
the obtained tunnel heterogeneous O&M data ontologies to 
classify the structural health status of the tunnel and inform 
subsequent maintenance strategies.

3.1. Data layer

The data generated during tunnel O&M processes originates 
from diverse sources and exhibits significant structural vari
ability. To facilitate the effective integration and utilization 
of heterogeneous O&M data, it is essential to establish a 
classification for tunnel O&M data. This classification will 
provide a foundation and data support for subsequent uni
fied ontology modeling. Currently, the primary sources of 
tunnel O&M data include BIM models, GIS models, moni
toring data, image data, video surveillance, inspection 
reports, maintenance logs, and regulatory standards. These 
data encompass the majority of information required 
throughout the tunnel O&M process. Aside from BIM and 
GIS models, most of the other O&M data can be stored in 

Figure 1. Overall ontology-based framework.

4 L. LIU ET AL.



relational databases (RDB), which allows them to be catego
rized as RDB files. Consequently, this paper classifies tunnel 
heterogeneous O&M data into three main categories: BIM 
data, GIS data, and RDB data. Based on data formats, RDB 
data can be further subdivided into monitoring data, text 
data, and image data. Moreover, given the varying degrees 
of tunnel complexity, the types of O&M data differ accord
ingly, allowing users to flexibly extend the data as needed. 
These actual data can be associated with the ontologies 
developed later in this paper through methods such as 
IFCtoRDF, direct mapping, D2RQ and so on.

3.2. Ontology layer

Ontologies are typically categorized into top-level, domain, 
task, and application ontologies based on their hierarchy 
and dependencies. This paper focuses on developing a 
domain ontology for tunnel facilities to describe relevant 
concepts, properties, and axioms. Various methods exist for 
ontology development, including the seven-step method 
(Noy & McGuinness, 2001), Methontology (Fern�andez- 
L�opez et al., 1997), skeleton-based methods (Alfaifi, 2022), 
IDEF5 (L. Li et al., 2021), and so forth. Among above meth
ods, the seven-step method is commonly used, with specific 
steps including 1) determining the domain and scope of the 
ontology, 2) considering reusing existing ontologies, 3) enu
merating important terms in the ontology, 4) defining the 
classes and the class hierarchy, 5) defining the properties of 
classes, 6) defining the facets of the properties, and 7) creat
ing instances. This paper adopts the seven-step method for 
ontology development, and efforts are made to reuse 

existing entities and relationships to maintain consistency 
with current ontologies.

3.2.1. BIM data ontology
The latest version of the IFC standard is IFC 4.3.2.0, which 
introduces concepts including Ifc:Road, Ifc:Railway, 
Ifc:MarineFacility, Ifc:Bridge, and Ifc:Building for the inter
pretation and description of specific infrastructure domains. 
In IFC, these concepts are grouped under Ifc:Facility within 
Ifc:SpatialStructureElement. A spatial structure element is a 
generalization of all spatial elements used to define a spatial 
structure, providing spatial organization for a project. 
Ifc:FacilityPart allows for the spatial breakdown of built 
facilities. Currently, IFC has not introduced entities and 
properties specifically related to tunnels. To develop the 
ontology for tunnel BIM data, this paper extends the con
cepts and relationships of tunnel facilities based on existing 
IFC entity concepts (Venugopal et al., 2015). The core con
tent is depicted in Figure 2.

3.2.2. GIS data ontology
To develop a tunnel GIS data ontology based on CityGML, 
this paper extracts relevant modules from the CityGML 
standard, primarily including the Core module, the 
Construction module, and the Tunnel module. These core 
concepts are further expanded and refined. Taking the core 
concept ontology as an example, the relevant hierarchies 
and semantic relationships are illustrated in Figure 3. The 
core concept ontology primarily provides definitions for 
object concepts, spatial concepts, and geometric concepts, 
facilitating the modeling of data pertaining to the tunnel’s 

Figure 2. Tunnel BIM data ontology.
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surrounding environment (Z.-Z. Hu et al., 2019). The con
struction ontology serves as a higher-level concept for the 
tunnel ontology, offering definitions for basic elements and 
spatial concepts, while the tunnel ontology specifically 
defines the relevant entities associated with tunnel concepts.

3.2.3. Monitoring data ontology
SSN serves as an ontology for describing sensor networks. 
Its objective is to provide a unified semantic description for 
sensor networks, facilitating better understanding and inte
gration of sensor data. SSN follows a modular architecture, 
both horizontally and vertically, and comprises a lightweight 
core ontology known as sensor, observation, sample, and 
actuator (SOSA). SOSA is an ontology for describing sensor 
networks, observation data, and actuators. Both SOSA and 
SSN are based on open standards and semantic technologies 
such as OWL and RDF. They have gained widespread appli
cation and support in knowledge engineering, often used 
together to model and describe sensor networks and related 
entities. Based on the concepts and relationships of SSN and 
SOSA, the ontology for tunnel monitoring data is developed. 
The detailed concepts and relationships are depicted in 
Figure 4.

3.2.4. Text data ontology
The text data generated during the actual O&M processes of 
tunnels typically includes inspection reports, maintenance 
logs, and other documents. These data are generally stored 
in databases; however, the design of these databases often 
varies significantly among different tunnel projects, making 

it challenging to establish a universal text data ontology 
applicable to all tunnels. Therefore, this paper focuses on 
methods for developing a text data ontology.

Relational databases (such as MySQL and SQL Server) 
store data in the form of tables, with each table containing a 
set of related data that typically represents distinct objects. 
As the fundamental data structure within a database, a table 
consists of rows (records) and columns (fields). Each row 
corresponds to a specific entity instance, while each column 
represents an attribute of that entity. Moreover, the table’s 
attributes commonly include primary keys and foreign keys. 
A primary key is one or more fields within the table that 
uniquely identifies each row, making it indispensable; a for
eign key, on the other hand, is a field used to establish a 
relationship between two tables. Based on the above ana
lysis, this paper proposes the following ontology develop
ment rules to facilitate the development of the text data 
ontology: 1) The primary key of the data table is mapped to 
the core concept (class) of the ontology. 2) The primary key 
serves as a core concept to establish connections with other 
fields. 3) Other fields are mapped as object properties or 
data properties based on their data types. 4) Foreign keys 
connect different data tables. 5) Records within the data 
table are mapped as instances.

3.2.5. Image data ontology
The image data generated during tunnel O&M processes 
includes inspection images and surveillance videos. The 
storage of these data typically requires a combined applica
tion of relational databases and file systems. Relational data
bases (such as MySQL and PostgreSQL) can be utilized to 

Figure 3. Tunnel GIS core concept ontology.

6 L. LIU ET AL.



store the metadata of images and videos, while the actual 
image and video files are stored within the file system. The 
methodology for developing the ontology of image data is 
analogous to that of text data.

3.3. Mapping layer

Sections 3.1 and 3.2 have addressed the instantiation of vari
ous types of tunnel O&M data and the development of their 
corresponding ontologies. This section primarily focuses on 
establishing associations among the ontologies of different 
domains through ontology mapping. Ontology mapping is a 
complex process. Based on the research of Ehrig and Staab 
(2004), ontology mapping can be divided into six steps: 
ontology feature extraction, candidate entity pair selection, 
similarity calculation, similarity integration, similarity inter
pretation, and iterative computation. Building on this foun
dation, this paper further refines the process, proposing 
eight steps that include ontology input, ontology preprocess
ing, candidate entity pair selection, concept similarity calcu
lation, comprehensive similarity calculation, mapping result 
integration, iterative computation, and ontology output. 
Among these, concept similarity calculation and comprehen
sive similarity calculation are core steps in the ontology 
mapping process, as illustrated in Figure 5.

1. Ontology input
Determine the ontologies O1 and O2 that need to be 
mapped based on the various tunnel O&M data. These 
ontologies typically adhere to standard formats and 

encompass the entity concepts, attributes, and instances 
required for subsequent mapping.

2. Ontology preprocessing
Prior to mapping, ontologies often require a series of 
preprocessing operations to ensure that their structure 
and format are consistent and standardized. These pre
processing steps typically include the normalization of 
entity naming conventions, unification of format con
versions, elimination of duplicate entity concepts, and 
simplification of complex conceptual hierarchies.

3. Candidate entity pair selection
Upon completing the preprocessing operations, the next 
step is to traverse and retrieve the concepts from the 
ontologies. This paper primarily focuses on entity con
cept pairs c1, c2ð Þjc1 2 O1, c2 2 O2

� �
between two ontol

ogies, wherein only one candidate entity pair is selected 
during a single ontology mapping process.

4. Concept similarity calculation
The next step involves calculating the similarity for the 
selected candidate entity pair. There are various meth
ods for computing concept similarity; in this paper, it is 
focused on calculating text similarity, attribute similar
ity, structural similarity, and instance similarity.
a. Text-based concept similarity

Edit distance is a string metric that measures the 
difference between two string sequences. It repre
sents the minimum number of operations required 
to transform one string into another through inser
tions, deletions, and substitutions. The smaller the 
edit distance, the higher the similarity between the 
two strings. The detailed calculation formula is 

Figure 4. Tunnel monitoring data ontology.
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shown in Equation (1):

Simstring c1, c2ð Þ ¼ 1 −
dis c1, c2ð Þ

maxð c1j j, jc2jÞ
(1) 

where, c1j j and c2j j represent the string lengths of two 
entity concepts. dis c1, c2ð Þ represents the edit distance 
between the two entity concepts c1 and c2; which is the 
total number of operations required to transform one 
string into the other.
b. Attribute-based concept similarity

The similarity is calculated based on the shared 
attributes of the concept nodes, with the specific 
calculation formulas given in Equations (2)
and (3):

Simproperty c1, c2ð Þ ¼
f c1 \ c2ð Þ

f c1 [ c2ð Þ − kf c1 − c2ð Þ − ð1 − kÞf ðc2 − c1Þ

(2) 

k ¼

f c1 − c2ð Þ

f c1 [ c2ð Þ − f c1 \ c2ð Þ

1 −
f c1 − c2ð Þ

f c1 [ c2ð Þ − f c1 \ c2ð Þ
1

f ðc1Þ � f ðc2Þ

f ðc1Þ < f ðc2Þ

f c1 [ c2ð Þ ¼ f c1 \ c2ð Þ

8
>>>>><

>>>>>:

(3) 

where, f c1ð Þ and f c2ð Þ represents the number of attrib
utes of concept c1 and c2; f c1 \ c2ð Þ represents the 
number of common attributes between concepts c1 and 
c2; f c1 [ c2ð Þ denotes the total number of attributes of 
concepts c1 and c2; f c1 − c2ð Þ represents the number of 
attributes that concept c1 possesses but concept c2 does 
not; and f c2 − c1ð Þ represents the number of attributes 
that concept c2 possesses but concept c1 does not. 
c. Structural-based concept similarity

The similarity is determined by calculating the geo
metric distance between two concepts, specifically 
the distance from each concept node to the nearest 
common subnode, which can then be used to deter

mine the semantic distance. It is generally consid
ered that the smaller the semantic distance, the 
higher the similarity between the two concepts. The 
specific calculation is given by:

Simstructure c1, c2ð Þ ¼
Dep cjO1ð Þ þ Dep cjO2ð Þ

dis c1, c2ð Þ þ 1
� �

� ðDep O1ð Þ þ Dep O2ð ÞÞ

(4) 

where the definitions of dis c1, c2ð Þ are as follows:

dis c1, c2ð Þ ¼ L c1, cð Þ þ Lðc2, cÞ (5) 

where, c is the nearest common parent node of c1 and 
c2; L c1, cð Þ represents the shortest path from concept c1 
to c; and L c2, cð Þ represents the shortest path from con
cept c2 to c: In addition to considering the distance 
between the concept nodes and the common parent 
node, this formula also takes into account the depth of 
the ontology and the depth of the common parent 
node in the ontology, denoted as Dep cjO1ð Þ; which rep
resents the depth of the common parent node in the 
ontology O1; and Dep O1ð Þ; which represents the depth 
of the ontology O1:

d. Instance-based concept similarity
Given two sets A and B, the Jaccard coefficient is 
defined as the ratio of the size of the intersection 
of A and B to the size of their union as:

J A, Bð Þ ¼
A \ Bj j

A [ Bj j
¼

A \ Bj j

Aj j þ jBj − jA \ Bj
(6) 

When sets A and B are empty, J A, Bð Þ ¼ 1: Based on 
the Jaccard calculation formula, the instance-based con
cept similarity calculation is given by:

Siminstance c1, c2ð Þ ¼
f ð Ic1 \ Ic2j jÞ

f ð Ic1 [ Ic2j jÞ
(7) 

Figure 5. Ontology mapping flowchart.
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where, Ic1 represents the instance set corresponding to 
concept c1; Ic2 represents the instance set corresponding 
to concept c2; f ðjIc1 \ Ic2 jÞ denotes the number of ele
ments in the intersection of Ic1 and Ic2 ; and f ðjIc1 [ Ic2 jÞ

represents the number of elements in the union of Ic1 

and Ic2 :

5. Comprehensive similarity calculation
In step (4), the similarity of multiple candidate entity 
pairs is computed. To integrate these similarities, this 
step is based on the concept of local confidence, where 
local confidences are calculated for text, attribute, struc
tural, and instance similarities. In existing methods for 
integrating similarity, a fixed weight approach is typic
ally used, which ignores the applicability of different 
strategies to different ontologies. By introducing local 
confidence, dynamic combinations of multiple mapping 
strategies can be achieved, resulting in more reliable 
mapping results.
a. Text-based local confidence

In the calculation of text-based local confidence, 
the Term Frequency-Inverse Document Frequency 
(TF-IDF) method is used. First, the classes and 
annotated properties of the two ontologies to be 
mapped are concatenated to construct correspond
ing documents. Then, the TF-IDF method is 
applied to vectorize the document content corre
sponding to the ontologies. Finally, the cosine simi
larity is used to calculate the similarity between the 
two vectors. The specific calculation formula is:

astring ¼
TFIDF D1ð Þ∙TFIDF D2ð Þ

TFIDF D1ð Þj j � jTFIDF D2ð Þj
(8) 

where, D1 and D2 are the two documents correspond
ing to the ontology O1 and O2: TFIDF D1ð Þ and 
TFIDF D2ð Þ are the feature vectors obtained after trans
forming the documents using the TF-IDF method. 
TFIDF D1ð Þj j and TFIDF D2ð Þj j represent the norms of 

the feature vectors. Through this calculation, the overall 
textual similarity between the two ontologies can be 
measured. 
b. Attribute-based local confidence

The calculation formula for attribute-based local 
confidence is given by:

aproperty ¼
Common Propj jð ÞO1, O2

minðPropO1
, PropO2

Þ
(9) 

where, Common Propj jð ÞO1, O2 
represents the number of 

shared attributes between the two ontologies, and 
minðPropO1

, PropO2
Þ represents the smaller of the num

ber of attributes in the two ontologies. This formula 
determines the local confidence of attribute similarity 
by measuring the proportion of shared attributes in 
relation to the total number of attributes in the two 
ontologies.
c. Structural-based local confidence

In the calculation of structural-based local confi
dence, the following formula is used:

astructure ¼
Same Depj jð ÞO1, O2

\ Same Subj jð ÞO1, O2

minðCo1 , Co2Þ
(10) 

where, Same Depj jð ÞO1, O2
\ Same Subj jð ÞO1, O2 

represents 
the number of concepts in both ontologies that have 
the same depth and number of sub-concepts, and 
minðCo1 , Co2Þ represents the smaller of the number of 
concepts in the two ontologies. This formula primarily 
reflects the structural differences between the two 
ontologies. 
d. Instance-based local confidence

In the calculation of instance-based local confi
dence, the following formula is provided:

ainstance ¼ 1 −
a

IO1j j þ jIO2 j þ a

� �

�
min IO1j j, jIO2 j

� �

max IO1j j, jIO2 j
� �

(11) 

where, IO1j j and IO2j j represent the number of instances 
for ontology O1 and O2; respectively, and a is a tuning 
factor to ensure proper scaling, typically set to a con
stant value, a ¼ 1: From the formula, it can be seen 
that instance-based local confidence is positively corre
lated with the sum of the number of instances in the 
mapped ontologies, and negatively correlated with the 
difference in the number of instances between the 
mapped ontologies.
In practice, when calculating the local confidence under 
different strategies, a confidence threshold is often pre
set. When the calculated local confidence is below this 
threshold, the confidence of the similarity calculated by 
that strategy is considered low and can be approxi
mated as 0. Ultimately, this process yields a compre
hensive similarity score for the candidate entity concept 
pairs. The calculation formula is presented as follows:

Sim c1, c2ð Þ ¼

P
k ak � Simk
P

k ak
(12) 

where k 2 fstring, property, structure, instanceg; ak, Simk 
represent the local confidence and concept similarity 
based on the k strategy, respectively. 

6. Mapping result integration
Select an appropriate similarity threshold to integrate 
candidate entity pairs that meet or exceed this threshold 
into the ontology, thereby establishing equality relation
ships between the two concepts. During the integration 
process, it is essential to ensure the correctness and 
consistency of the mapping results. In cases of conflict, 
manual corrections will be necessary.

7. Iterative computation
After the calculation for the candidate entity pair is 
completed, the process returns to step (3) to select the 
next candidate entity pair. This cycle continues until all 
candidate entity pairs have been traversed, at which 
point the computation concludes.
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8. Ontology output
Output the final integrated target ontology. This output 
should encompass all mapping results while maintain
ing consistency and completeness. The resulting ontol
ogy can be utilized for further data integration, 
querying, and analysis.

3.4. Application layer

3.4.1. Overview of tunnel structural health grading 
strategy
Building on the previously discussed data layer, ontology 
layer, and mapping layer, this section proposes a structural 
health grading strategy for tunnels. The strategy comprises 
several steps: 1) Application ontology development. This 
step involves O&M personnel inputting corresponding 
requirement statements into the tunnel multi-source hetero
geneous O&M data management platform to develop the 
relevant application ontology based on O&M needs. 2) 
Mapping and semantic query. Utilizing the ontology map
ping methods in the mapping layer, the developed applica
tion ontology can be associated with the tunnel O&M data 
ontology. This mapping allows for the extraction of con
cepts from different O&M data ontologies through semantic 
query, thereby facilitating access to the required tunnel 
O&M data from diverse sources and structures. 3) Tunnel 
structural health assessment. Using fuzzy comprehensive 
evaluation methods, the associated multi-source heteroge
neous O&M data is subjected to comprehensive analysis and 
computation, thereby obtaining structural health assessment 
values for the tunnel at different levels. 4) Maintenance 
method selection. Referencing relevant regulatory standards, 
an assessment of the tunnel structural health grading is con
ducted. Based on the tunnel structural health grades, appro
priate O&M strategies are selected.

With the core objective of this strategy centered on the 
assessment of structural health status, the effective utiliza
tion of integrated multi-source heterogeneous data necessi
tates a systematic and structured evaluation approach. To 
this end, the present study establishes a four-level hierarch
ical evaluation index system, comprising the following levels: 
1) specific tunnel monitoring indicators (including stress, 
displacement, crack width, electromechanical status, etc.), 2) 
tunnel cross-sections, 3) tunnel segments, and 4) the overall 
tunnel structure. Concurrently, in accordance with the 
Technical Specifications for Highway Tunnel Maintenance 
(JTG H12-2015), the structural safety condition is catego
rized into five distinct grades: Grade 1 (Intact condition), 
Grade 2 (Slight damage), Grade 3 (Moderate damage), 
Grade 4 (Severe damage), and Grade 5 (Dangerous condi
tion). To enable quantitative assessment, a fuzzy comprehen
sive evaluation method is employed, wherein expert-defined 
threshold intervals are integrated with weightings derived 
through AHP method. This methodological framework facili
tates the fusion of tunnel O&M data into a unified, quantifi
able health index for each tunnel section.

3.4.2. Application ontology development
O&M personnel can input various natural language state
ments into the tunnel multi-source heterogeneous O&M 
data management platform according to operational needs, 
thereby developing different application ontologies. The spe
cific construction process is illustrated in Figure 6. Initially, 
a tokenization tool is employed to segment the input natural 
language statements, resulting in the corresponding toke
nized sequence of statements. Next, several core terms are 
identified, and the entity relationships among core terms are 
established. Finally, the corresponding application ontology 
is generated. O&M personnel may develop corresponding 
application-specific ontologies based on actual requirements, 
thereby enabling the retrieval of targeted tunnel O&M data.

Using the tunnel structural health assessment as an 
example, it is essential to assess and classify the structural 
health of different segments and cross-sections of the tunnel. 
Based on the review of relevant literature on tunnel struc
tural health assessment in Section 2, it is evident that the 
evaluation of tunnel structural health requires the establish
ment of a multi-tiered system of health indicators. This sys
tem generally includes levels such as tunnel monitoring 
indicators, specific tunnel components, tunnel cross- 
sections, and tunnel segments. In this paper, a four-tier 
structural health assessment ontology is developed, as illus
trated in Figure 6.

This ontology is prefixed with “TA” and encompasses 
structural health evaluation information across various levels 
of the tunnel. Specifically, TA:TunnelValue, TA:TunnelPart 
Value, TA:TunnelCrossSectionValue, TA:MonitorIndicator 
Value represent the overall structural health assessment 
value of the tunnel, the structural health assessment value of 
specific monitored segments, the structural health assess
ment value of tunnel cross-sections, and the structural 
health assessment value of a specific monitoring indicator, 
respectively. Among these assessment values, the higher-tier 
structural health assessment values are determined by the 
lower-tier ones, with the structural health assessment value 
of tunnel monitoring indicators being influenced by specific 
monitoring results, which include sensor data, text data, 
image data, and other types of heterogeneous O&M data for 
the tunnel.

3.4.3. Mapping and semantic query
After completing the development of the application ontol
ogy for tunnel structural health assessment, the application 
ontology is mapped to the tunnel multi-source heteroge
neous O&M data ontology. This mapping enables the 
extraction of the required concepts and instances from the 
O&M data ontology. The ontology mapping method 
employed is based on the comprehensive similarity mapping 
method proposed in the mapping layer. Different types of 
O&M data provide varying information regarding tunnel 
structural health assessment. Monitoring data, text data and 
image data primarily offer specific structural health moni
toring indicators for the tunnel. BIM and GIS data mainly 
provide detailed structural and locational information about 
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the tunnel. Part of the ontology mapping is illustrated in 
Figure 7.

After obtaining the mapping results between the applica
tion ontology and the tunnel heterogeneous O&M data 
ontology, the required O&M data instances can be extracted 
using SPARQL Protocol and RDF Query Language 
(SPARQL) queries. SPARQL is a query language designed 
for querying and manipulating RDF data (Zhong et al., 
2018). By importing ontology and instance data into 
GraphDB, SPARQL statements can be customized to achieve 
queries across heterogeneous information.

3.4.4. Structural health assessment
Upon obtaining the necessary heterogeneous O&M data for 
the tunnel, the next step involves a comprehensive utiliza
tion and analysis of these data to accurately assess the struc
tural health status of the tunnel. This analysis lays the 
foundation for subsequent strategy selection in tunnel main
tenance. In the acquired heterogeneous O&M data, BIM 
data primarily provides detailed structural and locational 
information about the tunnel. GIS data offers information 
about the surrounding environment and supplementary 
descriptions of relevant locations. Monitoring data encom
passes long-term indicators such as stress, strain, and settle
ment; image data focuses on monitor indicators suitable for 
periodic inspections, such as tunnel cracks and structural 
damage; while text data primarily presents monitor indica
tors related to electromechanical equipment, traffic signs, 
and tunnel entrances in a text format.

The health values of monitor indicators reflected by the 
text and image data are determined by relevant O&M per
sonnel. For the health values represented by the monitoring 
data, a fuzzy comprehensive evaluation method is predom
inantly employed for calculation. Additionally, BIM and GIS 
data enhance the information regarding the tunnel’s cross- 
sections, segments, and locations by correlating with the 
O&M data. The overall methodological flowchart is illus
trated in Figure 8.

To assess the tunnel structural health based on fuzzy 
evaluation methods, corresponding factor sets for each hier
archical health assessment value are established. The rele
vant symbols, their corresponding relationships with tunnel 
structural health assessment ontology entities at various lev
els, and the specific meanings of each symbol are detailed in 
Table 1.

In accordance with the tunnel structure evaluation 
method of Technical Specifications for Highway Tunnel 
Maintenance, the assessment of tunnel structural health is 
categorized into five grades: Grade 1, Grade 2, Grade 3, 
Grade 4, and Grade 5. These grades correspond to intact 
condition, slight damage, moderate damage, severe damage, 
and dangerous condition, respectively. Based on this classifi
cation, the evaluation set is defined as:

~V ¼ v1, v2, v3, v4, v5f g (13) 

where v1, v2, v3, v4, v5 correspond to the previous structural 
health condition grades, respectively. To facilitate quantita
tive analysis of different grades, a grade scoring matrix is 
constructed as:

Figure 6. Application ontology development flowchart.
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Figure 7. Mapping of application ontology and heterogeneous O&M data ontology.

Figure 8. Overall flowchart of the tunnel structural health assessment strategy.
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G ¼ ½5, 4, 3, 2, 1� (14) 

where Grade 1 corresponds to 5, and the rest follow in 
descending order.

In fuzzy comprehensive evaluation, membership func
tions are utilized to describe the membership relationship of 
actual data to the evaluation set (Lin et al., 2022). Common 
membership functions include rectangular, triangular, trap
ezoidal, parabolic, and normal distribution (T. H. Y. Li 
et al., 2013). In actual engineering, the health status of vari
ous monitoring factors generally conforms to a linear rela
tionship with their monitoring values. Therefore, this paper 
employs a combination of triangular and trapezoidal distri
bution to construct a 5-grade membership function. The 
function is employed to describe the membership degree of 
actual data to different grades of structural health condi
tions. As illustrated in Figure 9, x represents the actual 
measurement of a monitoring indicator, and k1, k2, k3, k4 are 
the classification boundaries for the monitoring indicator, 
which need to be determined based on the specific facility 
conditions. The relationships between k1, k2, k3, k4 and 
a1, a2, a3, a4, a5 are as follows. Typically, a1 is chosen to be 
0:8k1, and the formulas for each membership function can 
be derived accordingly:

k1
k2
k3
k4

2

6
6
4

3

7
7
5 ¼

0:5 0:5 0 0 0
0 0:5 0:5 0 0
0 0 0:5 0:5 0
0 0 0 0:5 0:5

2

6
6
4

3

7
7
5

a1
a2
a3
a4a5

2

6
6
6
6
4

3

7
7
7
7
5

(15) 

Based on the five grades defined in the evaluation set, a 
fuzzy comprehensive judgment matrix is constructed. For a 
monitoring indicator Ik corresponding to the set of monitor 

indicators ~I ; the membership degree matrix for the actual 
measurement x of the monitoring indicator is given by:

Rk ¼ A1 xð Þ, A2 xð Þ, A3 xð Þ, A4 xð Þ, A5ðxÞ
� �

(16) 

The health assessment value of this monitoring indicator 
is calculated by:

Ik ¼ G� RT
k (17) 

The health values Ik of monitor indicators reflected by 
the text and image data are determined by relevant O&M 
personnel and are collectively categorized within ~I : The cal
culation of the tunnel health assessment values for each 
cross-section, section, and the overall structure, is illustrated 
in Table 2, where xðPiÞ represents the weight value of each 
section of the tunnel, generally determined based on the 
length of the tunnel section; xðCiÞ represents the weight of 
each cross-section of the tunnel, unless specified, it is gener
ally assumed that the weight values of each cross-section are 
equal; xðIiÞ represents the weight of each monitor indicator, 
determined by AHP.

3.4.5. Maintenance strategy selection
After calculating the health assessment values for various 
levels of tunnel structure, the obtained values are associated 
with the developed tunnel structural health assessment 

Table 1. The multi-level factor sets for tunnel structural health assessment.

Level Ontology class Factor set Description

I TunnelValue ~T ¼ Tf g T represents the overall assessment value of the tunnel structural 
health.

II TunnelPartValue ~P ¼ P1, . . . , Pi , . . . , Pmf g Pi represents the structural health assessment value for the i-th 
section of the tunnel.

III TunnelCrossSectionValue ~C i ¼ Ci, 1, . . . , Ci, j , . . . , Ci, nif g Ci, j represents the structural health assessment value for the j-th 
cross-section within the i-th monitoring section of the tunnel.

IV MonitorIndicatorValue ~I ¼ fI1, . . . , Ik , . . . , Iog Ik represents the health assessment value for the k-th monitor 
indicator within the tunnel.

Figure 9. Membership distribution, function and graph.

Table 2. The formula for calculating the multi-level structure health assess
ment value.

Level Factor set Formula

I ~T ¼ Tf g T ¼
Pm

i¼1 xðPiÞ � Pi

II ~P ¼ P1, . . . , Pi , . . . , Pmf g Pi ¼
Pni

j¼1 xðCi, jÞ � Ci, j

III ~C i ¼ Ci, 1, . . . , Ci, j , . . . , Ci, nif g Ci, j ¼
Po

k¼1 xðIkÞ � Ik
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ontology. Subsequently, a series of specific semantic rules 
for tunnel structural health grades are defined to achieve a 
graded assessment of tunnel structural health. Using tunnel 
overall structural health assessment values as an example, 
the following rule can be derived based on the fuzzy com
prehensive evaluation matrix constructed in Section 3.4.3. 
Here, TA:hasRate is an object property representing the 
structural health grade of the tunnel entity:

lessThan TunnelValue, 1:5ð Þ

greaterThanOrEqual TunnelValue, 1ð Þ

�

¼> hasRate Tunnel, 5ð Þ

By defining semantic rules for the structural health of 
different tunnel levels, structural health grades can be 
obtained for various monitoring indicators, monitoring 
cross-sections, tunnel segments, and the overall tunnel. 
Once the structural health grade of a tunnel has been deter
mined, appropriate and targeted maintenance strategies can 
be deployed. In alignment with relevant standards, a system
atic mapping is established between structural health grades 
and the corresponding O&M interventions, as detailed in 
Table 3.

Each grade reflects a distinct physical condition of the 
tunnel structure and necessitates a tailored response. 1) 
Grade 1: The overall tunnel structure is in sound condition, 
with no abnormalities or only minor, non-progressive 
anomalies. No immediate action is required; routine inspec
tions should continue at the standard frequency. 2) Grade 2: 
The tunnel structure exhibits minor deterioration but 
remains stable. Regular monitoring of the affected areas is 
advised, including inspections of crack width, joint integrity, 
and electromechanical system performance. 3) Grade 3: 
Moderate structural damage is present, though deterioration 
progresses slowly. Localized reinforcement is recommended, 
including crack injection, waterproof lining repairs, and 
grouting in zones exhibiting elevated strain. 4) Grade 4: 
Severe structural deterioration is observed, necessitating 
immediate maintenance action. Reinforcement measures 
may involve the installation of steel ribs, fiber-reinforced 
polymer (FRP) wrapping, or shotcrete application. 5) Grade 
5: The tunnel is in a critically compromised state, requiring 
emergency intervention. Full closure is warranted, followed 
by urgent structural assessment and reinforcement, which 
may include partial reconstruction to restore structural 
integrity.

Following the selection of overall tunnel-level mainten
ance strategies, more granular measures must be imple
mented based on specific monitoring indicators 
corresponding to different tunnel segments and cross- 
sections. These localized indicators guide targeted interven
tions to ensure structural integrity and serviceability. For 
instance, when excessive cracking is detected in the tunnel 
lining, remedial actions such as epoxy injection, crack seal
ing, and renewal of waterproof linings should be under
taken. In cases of significant displacement or settlement, 
grouting reinforcement of the foundation and surrounding 
rock mass is necessary to restore structural stability. Should 
water leakage occur, corrective measures may include drain
age system repairs and reinforcement of the waterproofing 

layer to mitigate moisture ingress. In the event of corrosion 
of metallic components, replacement with corrosion- 
resistant materials is recommended to prolong service life.

For more severe structural deformations, comprehensive 
strengthening techniques such as steel rib support, FRP 
wrapping, and structural realignment should be employed to 
restore the tunnel’s designed geometry and load-bearing 
capacity. By linking the evaluation results with well- 
established repair and reinforcement methods, the frame
work supports precise, data-driven maintenance decisions. 
Additionally, health grades can be used to prioritize limited 
resources and plan long-term maintenance schedules.

4. Validation of the proposed framework

4.1. Case study

4.1.1. Case overview
The Tanglang Mountain Tunnel, completed in 2006, is situ
ated in the Nanshan District of Shenzhen, traversing the 
Tanglang Mountain. This dual-tube six-lane highway tunnel 
is arranged separately for traffic traveling in opposite direc
tions. Using Nanshan District toward Longgang District as 
the forward direction, determine the left and right tunnels 
accordingly. The axial distance between the left and right 
tunnels is 38 meters, with the left tunnel spanning a total 
length of 1719.5 meters and the right tunnel spanning 1711 
meters. Taking into account various factors such as adverse 
geological conditions, structural defects, and safety hazards 
at different locations along the tunnel, the tunnel has been 
subdivided into distinct segments. Each segment prioritizes 
different monitoring parameters, with several monitoring 
sections selected within each segment for focused 
surveillance.

Within the tunnel, four types of sensors are deployed: 
laser rangefinders, static leveling instruments, crack gauges, 
and surface strain gauges. These sensors facilitate real-time 
monitoring of various parameters. Different monitoring 
projects within the same monitoring section are arranged 
along the same cross-section, facilitating comparative ana
lysis of monitoring data. Laser rangefinders are positioned 
at the right haunch of the monitoring section, while surface 
strain gauges are symmetrically placed at the crown of the 
arch and at both the left and right haunches of the monitor
ing section. Depending on site conditions, static leveling 
instruments are positioned at the haunches of the monitor
ing section. Crack gauges are conducted at the widest point 
of the crack, with one monitoring point installed. The 
detailed monitoring indicators, measurement ranges, and 
number of deployments for each sensor are shown in Table 
4. This study primarily focuses on several segments of the 
left tunnel of the Tanglang Mountain Tunnel, with sensor 
placements illustrated in Figure 10.

4.1.2. Data instantiation and semantic query
According to Technical Guidelines for Long-term 
Monitoring of In-service Highway Tunnels (T/CHTS 10021- 
2020) and Technical Specifications for Highway Tunnel 
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Maintenance (JTG H12-2015), considering the geological 
conditions, structural anomalies, and safety hazards at vari
ous locations within the tunnel, the tunnel has been seg
mented into distinct sections. Each section has specific focus 
areas for monitoring, and several monitoring cross-sections 
have been selected within each section for detailed scrutiny. 
This paper analyzes three key monitoring sections, with 
detailed information outlined in Table 5.

The data from the Tanglang Mountain Tunnel during 
the O&M process is associated with the respective O&M 
data ontologies. The detailed maintenance data selected is 
illustrated in Table 6. Among these, the monitoring data 
from March 17, 2023 to June 13, 2023, is selected, reflecting 
structural monitoring indicators such as displacement, 
settlement, stress, and strain. The text data primarily indi
cates the daily operational status of the tunnel’s 

Table 3. Maintenance strategies for varied tunnel structural health grades.

Grade Value range Evaluation set Description Maintenance strategy

Grade 1 [4.5,5] v1 Intact condition Routine maintenance
Grade 2 [3.5,4.5) v2 Slight damage Conduct surveillance on damaged structural segments and 

undertake necessary maintenance when essential.
Grade 3 [2.5,3.5) v3 Moderate damage Conduct focused surveillance on compromised structural 

segments and implement localized maintenance and 
repairs as required.

Grade 4 [1.5,2.5) v4 Severe damage Swiftly implement remedial measures for structural ailments
Grade 5 [1,1.5) v5 Dangerous condition Promptly close the tunnel for necessary treatment. In 

exceptional circumstances, undertaking localized 
reconstruction or renovation may be imperative.

Table 4. Basic information of sensors.

Sensor Monitoring item Range Installation number

Laser Range Finder Peripheral displacement 0.05� 40m 28
Static Leveling Instrument Tunnel settlement 0.2� 100mm 4
Crack Gauge Crack width 0� 100mm 2
Surface Strain Gauge Arch ring circumferential strain、arch crown longitudinal strain 0� 3000le 12

Figure 10. Pictures and sensor placements of Tanglang Mountain tunnel.

Table 5. Tunnel monitoring cross-section.

Monitoring part Potential structural safety risk Monitor indicator Monitoring cross-section

ZK0þ 900�ZK1þ 000 Tunnel Eccentric Loading Peripheral displacement, arch ring 
circumferential strain, 
electromechanical systems, crack 
numbers

ZK0þ 900
ZK0þ 950
ZK1þ 000

ZK1þ 100�ZK1þ 400 Differential Settlement and Structural 
Shrinkage

Peripheral displacement, tunnel 
settlement, arch crown longitudinal 
strain, electromechanical systems, 
crack numbers

ZK1þ 100
ZK1þ 200
ZK1þ 300
ZK1þ 400

ZK1þ 500�ZK1þ 600 Relaxation Loading of Surrounding 
Rock

Peripheral displacement, crack width, 
arch crown longitudinal strain, 
electromechanical systems, crack 
numbers

ZK1þ 500
ZK1þ 515
ZK1þ 550
ZK1þ 600
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electromechanical systems, while the image data mainly 
documents the number of cracks in the tunnel. BIM data 
provide information on the tunnel segments and cross- 
sectional locations. Utilizing the mapping results from the 
mapping layer, a multi-source heterogeneous data ontology 
encompassing all actual O&M data for the tunnel is ultim
ately obtained. Subsequently, through SPARQL queries and 
the mapping relationships between the application ontology 
and the tunnel heterogeneous O&M data ontology, the 
required heterogeneous O&M data can be queried.

4.1.3. Structural health assessment
Following the tunnel structural health assessment value cal
culation method outlined in Section 3.4.4, the monitoring 
intervals for each health monitoring indicator are deter
mined based on actual tunnel conditions and relevant litera
ture (Dong et al., 2008). The membership functions for each 
indicator are determined and the corresponding fuzzy com
prehensive judgment matrices are established. Multiplying 
these matrices by the grade scoring matrix G ¼ ½5, 4, 3, 2, 1�
yields the structural health assessment values for monitoring 
indicators (Table 7).

After calculating the structural health assessment values 
for different indicators, it is also necessary to establish the 
weights for each indicator. This study, referencing relevant 
literature (Zhong et al., 2018), utilizes the AHP to determine 
the weights of each indicator. Through consultation with 
relevant tunnel experts and engineers, the monitoring indi
cators involved in this engineering project are compared in 
terms of their weights. The exponential scale method e0

4 to 
e8

4 is used to construct the judgment matrix. Taking 
ZK1þ 200 as an example, three monitoring indicators are 
set as follows: peripheral displacement (I1), tunnel settle
ment (I2), and vault longitudinal strain (I3). The judgment 
matrix is constructed as follows:

J ¼
1 e−2

4 e2
4

e2
4 1 e4

4

e−2
4 e−4

4 1

2

6
4

3

7
5 (18) 

After normalization calculations, the weight vector is 
obtained:

W ¼
0:307
0:506
0:186

2

4

3

5 (19) 

The consistency index (CI) is calculated by:

CI ¼
kmax − n

n − 1
� 0:006 (20) 

The consistency rate (CR) is calculated by:

CR ¼
CI
RI
� 0:010 < 0:1 (21) 

Since CR < 0.1, the consistency ratio is less than 0.1, 
indicating that the consistency of the judgment matrix is 
acceptable. Therefore, the calculation results of the struc
tural health assessment value for the ZK1þ 200 cross- 
section are shown in Table 8.

Table 8 indicates that the assessment values for three 
indicators of the cross-section ZK1þ 200 are as follows. 
Peripheral displacement, tunnel settlement, and arch crown 
longitudinal strain are rated at 5.00, 3.93, and 5.00. After 
constructing the judgment matrix using AHP, the final 
weight values for the three indicators are determined. The 
cross-section structural health assessment value for 
ZK1þ 200 is calculated to be 4.45. The computation process 
for other cross-sections is similar to the previous procedure. 
By performing a weighted summation of the health assess
ment values of each monitoring indicator and their respect
ive weights, the structural health assessment values can be 
ultimately derived for the corresponding cross-sections. And 
then the mean value of these cross-sections within the same 
section is computed to represent the structural health assess
ment value for that specific section. For distinct sections, 
the calculation of the tunnel’s overall structural health 
assessment value is conducted based on the lengths of the 
sections.

Table 6. Overview of Tanglang Mountain tunnel maintenance data.

Data type Source Format Size Data and ontology association tool

BIM data Design models .ifc 226MB IFCtoRDF
Monitoring data Sensors .csv 205MB D2RQ
Text data inspection reports, maintenance logs, regulatory standards. .pdf 131MB D2RQ
Image data Inspection images、surveillance videos .png 3.52GB D2RQ

Table 7. Health monitoring intervals for partial monitoring indicators.

Grade
Peripheral 

displacement (mm)
Tunnel 

settlement (mm)
Crack 

width (mm)
Arch ring circumferential 

strain (le)
Arch crown longitudinal 

strain (le)

Grade 1 [0,5] [0,5] [0,0.1] [0,50] [0,50]
Grade 2 [5,15] [5,10] [0.1,0.5] [50,100] [50,100]
Grade 3 [15,30] [10,20] [0.5,1.0] [100,200] [100,200]
Grade 4 [30,60] [20,50] [1.0,5.0] [200,400] [200,400]
Grade 5 [60, þ1] [50, þ1] [5.0, þ1] [400, þ1] [400, þ1]

Table 8. Structural health assessment value for cross-section ZK1þ 200.

Ci, j xðIkÞ Ik

4.45 0.307 5.00
0.506 3.93
0.186 5.00
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Table 9 shows that the structural health assessment val
ues for the three selected tunnel sections are 4.20, 4.47, and 
4.48, respectively. The overall structural health assessment 
value of the tunnel is 4.43, indicating that the overall struc
tural health condition of the tunnel is good. However, there 
are also some cross-sections with relatively low structural 
health assessment values, such as ZK0þ 900, ZK1þ 000, 
and ZK1þ 600. These sections require specific remediation 
measures based on the monitoring indicators.

4.1.4. Maintenance strategy selection
Semantic web rule language (SWRL) is a language designed 
for representing rules on the semantic web (Z.-Z. Hu et al., 
2022). It empowers users to define rules based on OWL 
ontology, facilitating inference and queries in knowledge 
representation. SWRL rules permit the assertion of logical 

relationships within the ontology, thus supporting more 
advanced semantic reasoning (Chen & Luo, 2019).

Utilizing SWRLTab plugin in prot�eg�e, inference can be 
achieved for the health grades of different hierarchical levels 
within the tunnel. The entire reasoning process consists of 
four procedures, as shown in Figure 11. 1) The established 
reasoning rules are input into SWRLTab. 2) The ontology 
and the established rules are then transmitted to the reason
ing engine, including 5 rules, 27 classes, 87 entities, and 815 
axioms. 3) The reasoning engine is executed, resulting in 
260 axioms inferred. 4) The inferred axioms are transmitted 
back to the ontology model, thereby achieving knowledge 
reasoning.

Through the above reasoning process, the structural 
health assessment grades of each level of the Tanglang 
Mountain Tunnel can be determined. As shown in Figure 
12, the structural health assessment grades for the three 
selected tunnel sections are 2, 2, and 2, respectively. The 
overall structural health assessment grade of the Tanglang 
Mountain Tunnel is 2. Based on the current condition of 
the Tanglang Mountain Tunnel and according to the main
tenance strategy of application layer, regular monitoring of 
the affected areas should be conducted, including inspec
tions of crack width, joint integrity, and electromechanical 
system performance. With respect to specific tunnel moni
toring indicators, consider the example of tunnel cross- 
section ZK1þ 200. The predominant structural concern at 
this location is excessive settlement, which may compromise 
structural performance if left unaddressed. Accordingly, tar
geted remediation measures such as grouting behind the 

Table 9. Structural health assessment values for various hierarchical levels of 
the Tanglang Mountain tunnel.

T xðPiÞ Pi xðCi, jÞ Ci, j Monitor cross-section

4.43 0.17 4.20 0.33 3.69 ZK0þ 900
0.33 5.00 ZK0þ 950
0.33 3.92 ZK1þ 000

0.66 4.47 0.25 4.41 ZK1þ 100
0.25 4.45 ZK1þ 200
0.25 4.52 ZK1þ 300
0.25 4.51 ZK1þ 400

0.17 4.48 0.25 5.00 ZK1þ 500
0.25 4.35 ZK1þ 515
0.25 4.93 ZK1þ 550
0.25 3.65 ZK1þ 600

Figure 11. Reasoning process.
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lining and arch crown support installation should be consid
ered in subsequent maintenance planning.

4.2. Comparison with other methods

The proposed method is analyzed in terms of data fusion 
accuracy, completeness, and efficiency, and compare it with 
other methods:

Accuracy: The accuracy of data fusion in the proposed 
framework relies on whether the ontology mapping process 
can establish the relationships between different O&M data 
ontologies. To evaluate the accuracy of the ontology map
ping, the standard benchmark from the Ontology 
Alignment Evaluation Initiative was selected for testing. The 
evaluation is carried out using parameters such as precision, 
recall, and F1 score, and the results are compared with tra
ditional methods such as ASMOV, RiMOM, OntoDNA, and 
Falcon. As illustrated in Table 10, the proposed ontology 
mapping method performs better in terms of selected 
parameters, showing a certain level of improvement over 
previous methods.

Completeness: Compared with previous knowledge- 
driven (Nu~nez & Borsato, 2018) and data-driven approaches 
(Zhao et al., 2019), the framework encompasses a broader 
range of O&M data types, as illustrated in Table 11. By 
employing ontology for the unified modeling of various 
O&M data, it facilitates effective interactions among differ
ent data types, thereby reducing the potential decision- 
making errors that may arise from dependence on singular 
data sources.

Efficiency: Thanks to the semantic modeling and integra
tion capabilities of ontologies, the proposed framework ena
bles a fully automated process that encompasses data 
instantiation, semantic querying, structural health assess
ment, and decision-making. It achieves millisecond-level 
computation in data instantiation, mapping discovery, data 
extraction, and semantic reasoning, allowing for real-time 
monitoring of the tunnel structural health at all levels and 
significantly improving the efficiency of O&M decision- 
making. Especially in terms of data extraction, compared to 
traditional data-driven and manual search methods, the pro
posed framework shows significant improvements in speed. 

Figure 12. Structural health grade for Tanglang Mountain tunnel.
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Some required time for framework function is shown in 
Table 12.

4.3. Discussion

In the case section, this study specifically analyzes three seg
ments of the Tanglang Mountain Tunnel. BIM data, moni
toring data, text data, and image data collected during the 
tunnel’s O&M processes are associated with the developed 
ontologies. The developed application ontology model is 
mapped to the tunnel O&M data ontologies, enabling the 
retrieval of various instances of multi-source heterogeneous 
O&M data through corresponding SPARQL queries. 
Utilizing the proposed tunnel structural health assessment 
strategy, these diverse O&M data are integrated and ana
lyzed to obtain structural health assessment values for each 
level of the tunnel structure. Based on semantic reasoning 
rules and health assessment values, the structural health 
grading of the tunnel is automatically determined, assisting 
O&M personnel in selecting appropriate maintenance strat
egies. According to the results, the overall structural health 
assessment values of the selected three segments are all 2 or 
above, indicating a relatively good structural condition of 
the overall tunnel. This is consistent with the latest manual 
inspection report results, demonstrating the rationality of 
this strategy. For tunnel monitoring cross-sections with a 
structural health assessment grade of 2, targeted measures 
can be carried out for monitoring indicators with lower 
structural health assessment values.

The proposed framework exhibits strong scalability and 
generalizability, allowing for flexible extension across various 
dimensions, including types of O&M data, application 
ontology, monitoring indicators, and structural health 
assessment systems. This adaptability enables its application 
across tunnels of different scales and configurations. As an 
engineering case, the Tanglang Mountain Tunnel is 

employed to demonstrate the framework’s applicability. The 
tunnel encompasses a wide array of real-world O&M data 
types and embodies most of the typical characteristics of 
conventional tunnels, thus serving as a representative case 
study. To further validate the robustness and versatility of 
the proposed framework, additional O&M datasets from 
diverse tunnel projects will be collected and analyzed in 
future work. These efforts aim to assess the framework’s 
performance across multiple tunnel scenarios and support 
its continuous refinement and broader practical adoption.

Compared with existing methods, the proposed frame
work shows improvements in terms of accuracy, complete
ness, and efficiency of O&M data fusion. First, it 
comprehensively utilizes different similarity concepts such 
as text, attribute, structure, and instance, and introduces 
local confidence calculation formulas for each type of simi
larity, better establishing the relationships between different 
O&M data ontologies. Second, it integrates various hetero
geneous data sources to assess the structural health of the 
tunnel, reducing potential decision-making errors that may 
arise from reliance on a single data source, thereby enhanc
ing accuracy and comprehensiveness. Finally, it achieves 
millisecond-level fully automated computation and reason
ing through steps such as data ontology instantiation, ontol
ogy mapping, data extraction, and semantic reasoning, 
significantly improving the efficiency of data fusion.

Although initial progress has been made in tunnel het
erogeneous data integration and structural health assess
ment, it is undeniable that there are still several limitations 
in this study, which are summarized as follows:

1. In establishing mapping relationships among different 
ontologies, this study primarily employs methods based 
on concept similarity and local confidence, yielding 
favorable outcomes. However, it is noteworthy that 
while this approach is effective for smaller ontologies, it 
becomes time-intensive and laborious when applied to 
large-scale projects with numerous ontology entities 
and attributes. Consequently, future plans include 
investigating automated ontology mapping to more effi
ciently establish mappings and associations across vari
ous ontologies.

2. In tunnel structural health assessment, this study mainly 
employs a tunnel structural health assessment strategy 
based on fuzzy comprehensive evaluation. Although this 
method partially addresses the difficulty of quantita
tively evaluating tunnel structural health, there is still 
subjectivity in the specific indicator level interval div
ision and the determination of target layer object 
weights. Thus, further optimization is required in the 
future.

3. The present study primarily focuses on periodic struc
tural health assessment of tunnels and does not yet 
incorporate mechanisms for real-time response and 
maintenance. Future extensions of the proposed frame
work may explore the integration of real-time monitor
ing data through the deployment of edge computing 
nodes, enabling continuous acquisition and on-site 

Table 10. Comparison of ontology mapping methods.

Algorithm Precision Recall F1 score

ASMOV 0.92 0.87 0.89
RiMOM 0.92 0.88 0.90
OntoDNA 0.86 0.85 0.86
Falcon 0.92 0.88 0.90
The proposed framework 0.98 0.95 0.96

Table 11. Comparison of involved data of different methods.

Involved data
The proposed 

framework
The knowledge-driven  

method
The data-driven 

method

BIM data � �

GIS data �
Monitoring data � �

Text data � �

Image data �

Table 12. Time required for each function within the framework.

Framework function Time Unit

Data instantiation 83.5 ms per instance
Mapping discovery 92.3 ms per entity
Data extraction 16.67 ms per instance
Semantic reasoning 0.87 ms per axiom
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processing of structural behavior metrics. By leveraging 
the expert-defined threshold boundaries established in 
this study, the system could incorporate an automated 
alert module, triggering maintenance recommendations 
when specific indicators exceed predefined limits. 
Additionally, AI-assisted decision-making may be 
employed to enhance predictive capabilities, enabling 
health trend forecasting and automated maintenance 
strategy recommendation.

5. Conclusions

The data generated during tunnel maintenance is both 
multi-source and structurally heterogeneous. By integrating 
heterogeneous data through unified modeling, the tunnel’s 
structural health can be accurately assessed. This study pro
poses an ontology-based framework for tunnel O&M data 
integration, designed to support structural health assess
ment, thereby enhancing tunnel maintenance. This frame
work comprises four main layers: data layer, ontology layer, 
mapping layer, and application layer. Together, these layers 
form an integrated model for multi-source heterogeneous 
O&M data. The data layer focuses on categorizing tunnel 
O&M data and establishing linkages with the ontology layer. 
The ontology layer employs various methods to develop 
ontologies for each type of maintenance data. The mapping 
layer connects these ontology models through methods 
based on concept similarity and local confidence. The appli
cation layer encompasses application ontology development, 
mapping and semantic query, structural health assessment, 
and maintenance strategy selection. This approach substan
tially improves decision-making in tunnel maintenance.

In the validation section, the framework’s efficacy is 
tested using the Tanglang Mountain Tunnel as a case study, 
followed by a comparative analysis with previous studies to 
highlight its advantages. To further enhance the framework’s 
accuracy, rationality, and applicability, the following future 
developments are planned: 1) Implementing an ontology 
automatic mapping method utilizing deep learning. Plans 
include leveraging advanced natural language processing 
(NLP) models to support the automatic mapping of entity 
concepts across different ontologies. 2) Extending the frame
work to additional infrastructures. This involves refining the 
tunnel structural health assessment strategies and broaden
ing their application to include other critical infrastructures, 
such as bridges, highways, high-rise buildings, and beyond. 
3) Future work will focus on expanding real-time monitor
ing and responsive maintenance capabilities, thereby pro
moting seamless integration of real-time O&M data.
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