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ABSTRACT

As a typical representative of infrastructure, tunnels are indispensable carriers for the normal operation
of cities, with their safe and efficient operation directly influencing urban efficiency. However, the vari-
ous data supporting tunnel operation and maintenance (O&M) exhibit significant diverse sources and
structural differences, which pose substantial challenges to tasks such as tunnel structural health
assessment. To address these challenges, this paper proposes an ontology-based multi-source hetero-
geneous O&M data integration framework to support the assessment of tunnel structural health,
thereby improving decision-making efficiency in tunnel maintenance. The framework consists of four
layers: data layer, ontology layer, mapping layer, and application layer, enabling the unified modeling,
integration, and comprehensive application of multi-source heterogeneous tunnel O&M data.
Additionally, the proposed framework is applied to a practical engineering project, the Tanglang
Mountain Tunnel. Compared with existing methods, the framework demonstrates improvements in
data fusion accuracy, data completeness, and operational efficiency.
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1. Introduction

With the continuous advancement of urbanization, the scale
of tunnels has been expanding, gradually becoming an indis-
pensable component for the normal operation of cities.
However, compared to the vast scale of tunnel construction,
the level of tunnel operation and maintenance (O&M) man-
agement remains relatively low, resulting in significant defi-
ciencies in both safety and efficiency. Issues such as the
diversity of O&M data sources and their low levels of inte-
grated utilization expose critical gaps in tunnel O&M
management.

The O&M process of tunnels generates amounts of data
resources, including various models retained during the
design phase, monitoring data for structural health, as well
as resource data such as documents, images, and videos
accumulated during the maintenance phase. These data are
often stored in different databases, file systems, or hardware
devices, originating from diverse sources and structural dif-
ferences, which pose significant challenges for tunnel O&M
management (Leng et al., 2020). Therefore, one key issue in
the tunnel O&M process is how to integrate and utilize
these heterogeneous data to support applications such as
tunnel structural health assessment.

Currently, numerous methodologies exist for the integra-
tion and fusion of heterogeneous data. Traditional data

fusion methods primarily focus on the integration of data
from multiple sensors, including adaptive weighting
approaches (Pan et al., 2020), Bayesian methods (Wang
et al., 2018; Yoon & Yu, 2017), Kalman filtering (Ma et al,,
2022), fuzzy theory (Zhang et al, 2014), and Dempster-
Shafer evidence theory (Denceux, 2016). While these meth-
ods address the heterogeneity issues among similar data
sources, their effectiveness diminishes when applied to data
with  significant structural and format differences.
Specifically, traditional data fusion methods are unable to
extract semantic information from multi-source heteroge-
neous data and lack the ability to infer new knowledge from
existing data, thereby impeding the achievement of more
profound semantic fusion.

With the rapid development of the semantic web (Pauwels
et al, 2017) and knowledge engineering (Kiigler et al., 2023),
the concept of ontology has entered the forefront of atten-
tion. Ontology, owing to its semantic consistency, robust data
integration capabilities, and data inference functionalities,
presents a more precise, consistent, and intelligent approach
to handling and querying data. Garnering widespread atten-
tion from researchers, ontology demonstrates significant
advantages in integrating semantic information from hetero-
geneous data. Originally a concept in philosophy, ontology
was later introduced into the realms of artificial intelligence
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and information science. In 1993, Gruber from Stanford
University’s Knowledge Systems Laboratory defined ontology
as “an explicit specification or representation of a con-
ceptualization” (Gruber, 1993). It describes knowledge at the
semantic level, serving as a universal conceptual model for
domain knowledge (Pardo et al., 2012). By establishing ontol-
ogies for various heterogeneous data (Le & David Jeong,
2016; Venugopal et al., 2015), semantic information inter-
change and fusion among data with different structures can
be achieved (Mignard & Nicolle, 2014).

Against the above backdrop, this paper presents an
ontology-based multi-source heterogeneous O&M data inte-
gration framework to support tunnel structural health
assessment, thereby facilitating tunnel maintenance. The
framework comprises four layers: 1) Data layer: Data col-
lected during tunnel O&M processes is categorized, with
methods for associating each category with the ontology
provided. 2) Ontology layer: Various approaches are
employed to develop ontologies for different types of O&M
data. 3) Mapping layer: Ontology mapping is used to estab-
lish relationships between the different ontologies. 4)
Application layer: Based on the tunnel O&M data fusion
model, the structural health status of the tunnel structure is
assessed. Additionally, a practical engineering project is uti-
lized to validate the framework’s effectiveness. The main
contributions of this paper are as follows:

1. Various ontologies are developed for multi-source het-
erogeneous O&M data in tunnel maintenance.
Compared to previous studies, these ontologies incorp-
orate a broader spectrum of data types relevant to the
tunnel O&M phase and are directly associated with
real-world data, thereby achieving unification at both
the data and ontology layers.

2. An ontology mapping method is proposed based on
concept similarity and local confidence, which calculates
similarity from different aspects. By comprehensively
considering the different semantic features of the ontol-
ogies, the mapping relationships are established, ultim-
ately forming a cohesive integration model for
heterogeneous data.

3. Building on the integrated tunnel O&M data model, a
tunnel structural health assessment strategy is proposed.
This strategy leverages ontologies to extract various
types of tunnel O&M data and employs a comprehen-
sive approach to assess the structural health of tunnels,
thereby mitigating the potential decision-making errors
associated with reliance on single-source data.

The remainder of this study is organized as follows. In
section 2, the relevant research on ontology modeling,
ontology mapping, and tunnel structural health assessment
is introduced. Section 3 presents the proposed ontology
framework, along with its detailed components. Section 4
validates the framework through a case study, providing a
comparison with other methods and a discussion of the
results. Finally, section 5 concludes the study while elaborat-
ing on future work.

2. Literature review
2.1. Ontology modeling in infrastructure domain

Nowadays, numerous ontologies tailored to various hetero-
geneous data have been developed, including IfcOWL ontol-
ogy for Building Information Modeling (BIM) data (Pauwels
& Terkaj, 2016), SSN for monitoring data, and Building
Topology Ontology (BOT) for architectural topological
information (Rasmussen et al., 2017). In addition to the
development of ontologies for individual data types, many
scholars are now focusing on ontologies for various data
types in the infrastructure domain to facilitate compelling
correlation and interaction among heterogeneous data. One
approach is to develop a reference ontology. For instance,
Deng et al. (2016) developed a reference ontology called
Semantic City Model, which includes all entities and attrib-
utes of the BIM data standard Industry Foundation Classes
(IFC) and the Geographic Information System (GIS) data
standard City Geographic Markup Language (CityGML). By
establishing mapping relationships between the Semantic
City Model and the original schema, effective integration of
BIM and GIS can be achieved. In the field of building fire
protection, Jiang et al. (2023) developed an ontology model
for building fire protection (BFP), organizing, classifying,
and connecting various entities from four aspects: system,
device, operation, and construction. This model serves as a
bridge linking the geometric information of buildings with
sensor data, thereby integrating geometric information with
fire monitoring sensor information and providing data sup-
port for subsequent fire protection systems.

Another approach involves associating and mapping con-
cepts from different data domain ontologies to develop a
comprehensive ontology for heterogeneous data fusion. For
instance, Hor et al. (2016) developed corresponding ontolo-
gies based on the attributes and relationships of IFC and
CityGML. They then utilized ontology mapping methods to
identify similar concepts and relationships, thereby achiev-
ing the integration of BIM and GIS ontology models. Shi
et al. (2023) developed an ontology for City Information
Modeling (CIM) to integrate BIM, CIM, and Internet of
Things (IoT) data. This ontology comprises two parts: ini-
tially developing an ontology for BIM-GIS integration, fol-
lowed by associating dynamic IoT monitoring data with it,
thereby forming a comprehensive city information model.

The previous methods have facilitated the effective inte-
gration of heterogeneous data ontologies. However, several
challenges persist in the application of ontologies. Currently,
there is a lack of relevant O&M data ontologies in the tun-
nel domain, and the methods for ontology modeling of dif-
ferent O&M data types in tunnels lack systematic research.
Additionally, most current ontology models involve simplis-
tic data modeling, lacking in-depth comprehension and
application capability.

2.2. Ontology mapping methods and systems

In the field of data fusion, the integration of large amounts
of multi-source heterogeneous data is often involved, and a



single ontology is generally insufficient to cover various het-
erogeneous data types. Therefore, establishing effective asso-
ciations between different O&M data ontologies through
ontology mapping is considered a practical approach.
Numerous studies have applied various ontology mapping
methods to integrate ontologies from different domains.
Based on research analysis, related studies can be catego-
rized into four types:

1. Ontology semantic similarity matching method: This
approach compares the semantic similarity of different
ontology concepts to identify the relationships between
heterogeneous ontologies. OntoDNA is an ontology
mapping system focused on dynamically addressing
semantic inconsistencies between ontologies by treating
ontology concepts as DNA sequences for similarity cal-
culation (Kiu & Lee, 2006).

2. Ontology structural similarity matching method: This
method analyzes the structural relationships between
different ontologies to discover existing mapping rules.
For instance, Huang and Zhao (2020) proposed a
semantic processing-based ontology structural similarity
calculation method, which measures the similarity
between different concept nodes based on their seman-
tic distance in the ontology. Falcon combined lexical
similarity and structural similarity matching strategies,
identifying mapping relationships by analyzing class
and attribute names, definitions, and their structural
relationships in the ontology (W. Hu & Qu, 2008).

3. Ontology instance matching method: This approach uti-
lizes the instance data of ontologies and algorithms
such as machine learning to find mapping relationships
between ontologies. GLUE is an instance-based ontol-
ogy mapping system that applies machine learning to
discover mapping relationships between ontologies,
evaluating the similarity between concepts from mul-
tiple perspectives to achieve more accurate mapping
results (Doan, 2002).

4. Comprehensive method: These methods integrate the
above approaches to identify mapping relationships
between ontologies. ASMOV is an ontology mapping
system that combines multiple similarity measurement
methods, including text similarity, structural similarity,
and semantic similarity, to assess the similarity between
concepts in two ontologies from multiple angles (Jean-
Mary et al,, 2009). RiMOM is an ontology mapping sys-
tem based on Bayesian decision theory, which trans-
forms the ontology mapping discovery problem into a
minimal risk decision problem (J. Li et al, 2009). It
incorporates multiple strategies, including string-based,
structural, and semantic-based methods, to improve
mapping accuracy from different dimensions.

This paper draws on the strengths of previous ontology
mapping methods and systems, considering ontology simi-
larity at different levels, including concepts, instances, and
structures. It dynamically adjusts the weights of different
strategies based on the characteristics of different ontologies,
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thereby improving the accuracy and stability of the align-
ment between various O&M data ontologies.

2.3. Tunnel structural health assessment

Due to the diversity of monitoring data collected from oper-
ational tunnels, it is necessary to establish a comprehensive
health indicator evaluation system to assess tunnel structural
health status. In the late twentieth century, Einstein et al.
(1995) first introduced risk assessment theory into tunnel
engineering. They integrated various construction uncertain-
ties and environmental uncertainties into consideration,
establishing tunnel cost models and tunnel risk decision
support systems. This provided theoretical guidance for tun-
nel risk assessment research. Subsequently, Kampmann et al.
(1998) further proposed a classification system for tunnel
engineering based on this foundation. Using the
Copenhagen Metro project as a case study, they employed
the Monte Carlo method to establish a tunnel risk assess-
ment model and conducted qualitative analysis on the likeli-
hood of accidents. However, during this period, tunnel
health assessment methods primarily relied on qualitative
research, lacking the introduction of quantitative evaluation
indicators. Such approaches no longer suffice to meet the
needs of personnel for tunnel structural health assessment.

The analytic hierarchy process (AHP) offers a solution
for quantifying the weights of different indicators. AHP, a
quantitative analysis method for complex decision-making
problems, was proposed by American scholar Thomas Saaty.
It has been applied in some tunnel health assessments, miti-
gating the influence of subjective factors to some extent
(Hyun et al,, 2015). However, its reliance on domain experts
to rate different indicators limits its practical application in
engineering projects. To address this limitation, fuzzy theory
has been introduced into tunnel structural health assess-
ment. By calculating the membership degrees of different
indicators for various health levels, fuzzy theory provides a
more objective reflection of actual health conditions.

For instance, Khademi Hamidi et al. (2010) utilized
expert surveys and fuzzy AHP to propose solutions for risk
management in tunnel design, construction, and operation
using the Resalat Tunnel as a background. Zhang et al.
(2014), based on a comprehensive evaluation model using
fuzzy AHP, integrated different types of sensor data into the
health grading of shield tunnels to assess tunnel safety con-
ditions. Ren et al. (2023) designed a five-level evaluation
index system according to common sensor layouts in shield
tunnels, establishing corresponding multi-level health evalu-
ation factor sets to assess the structural health of different
tunnel monitoring locations. Ke et al. (2015) proposed a
specialized fuzzy AHP comprehensive evaluation model,
constructing a six-level indicator evaluation system for
health monitoring data. These studies, incorporating fuzzy
theory, have achieved graded assessment of tunnel structural
health, becoming commonly used evaluation strategies
today.

Building upon the previous research, this study simplifies
the hierarchical division of tunnels by incorporating
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commonly observed monitor indicators, facilitating practical
applications in engineering. Additionally, by developing
ontologies for heterogeneous tunnel O&M data, this paper
integrates heterogeneous data to assess the health status of
the tunnel structure, thereby aiding in the selection of sub-
sequent tunnel O&M strategies.

3. The proposed framework based on ontology

To integrate and utilize various data for tunnel structural
health assessment, this paper proposes a framework based
on ontologies for tunnel heterogeneous information model-
ing, ontology mapping, and structural health assessment. As
illustrated in Figure 1, the overall framework consists of
four layers: data layer, ontology layer, mapping layer, and
application layer. The data layer encompasses the commonly
used data in tunnel O&M processes, including BIM data,
GIS data, monitoring data, text data, and image data. The
ontology layer primarily focuses on the conceptual defini-
tions and developing methods of the BIM data ontology,
GIS data ontology, monitoring data ontology, text data
ontology, and image data ontology. The ontology layer is
linked to the data layer through various transformation

methods. The mapping layer calculates the comprehensive
similarity between different ontologies using concept simi-
larity and local confidence, thereby establishing connections
among different ontologies. The application layer leverages
the obtained tunnel heterogeneous O&M data ontologies to
classify the structural health status of the tunnel and inform
subsequent maintenance strategies.

3.1. Data layer

The data generated during tunnel O&M processes originates
from diverse sources and exhibits significant structural vari-
ability. To facilitate the effective integration and utilization
of heterogeneous O&M data, it is essential to establish a
classification for tunnel O&M data. This classification will
provide a foundation and data support for subsequent uni-
fied ontology modeling. Currently, the primary sources of
tunnel O&M data include BIM models, GIS models, moni-
toring data, image data, video surveillance, inspection
reports, maintenance logs, and regulatory standards. These
data encompass the majority of information required
throughout the tunnel O&M process. Aside from BIM and
GIS models, most of the other O&M data can be stored in

1.Application

2.Mapping and

3. Structural Health 4 Maintenance

Figure 1. Overall ontology-based framework.
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relational databases (RDB), which allows them to be catego-
rized as RDB files. Consequently, this paper classifies tunnel
heterogeneous O&M data into three main categories: BIM
data, GIS data, and RDB data. Based on data formats, RDB
data can be further subdivided into monitoring data, text
data, and image data. Moreover, given the varying degrees
of tunnel complexity, the types of O&M data differ accord-
ingly, allowing users to flexibly extend the data as needed.
These actual data can be associated with the ontologies
developed later in this paper through methods such as
IFCtoRDF, direct mapping, D2RQ and so on.

3.2. Ontology layer

Ontologies are typically categorized into top-level, domain,
task, and application ontologies based on their hierarchy
and dependencies. This paper focuses on developing a
domain ontology for tunnel facilities to describe relevant
concepts, properties, and axioms. Various methods exist for
ontology development, including the seven-step method
(Noy & McGuinness, 2001), Methontology (Fernandez-
Lopez et al.,, 1997), skeleton-based methods (Alfaifi, 2022),
IDEF5 (L. Li et al., 2021), and so forth. Among above meth-
ods, the seven-step method is commonly used, with specific
steps including 1) determining the domain and scope of the
ontology, 2) considering reusing existing ontologies, 3) enu-
merating important terms in the ontology, 4) defining the
classes and the class hierarchy, 5) defining the properties of
classes, 6) defining the facets of the properties, and 7) creat-
ing instances. This paper adopts the seven-step method for
ontology development, and efforts are made to reuse

DUL:hasLocation
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existing entities and relationships to maintain consistency
with current ontologies.

3.2.1. BIM data ontology

The latest version of the IFC standard is IFC 4.3.2.0, which
introduces  concepts including Ifc:Road, Ifc:Railway,
Ifc:MarineFacility, Ifc:Bridge, and Ifc:Building for the inter-
pretation and description of specific infrastructure domains.
In IFC, these concepts are grouped under Ifc:Facility within
Ifc:SpatialStructureElement. A spatial structure element is a
generalization of all spatial elements used to define a spatial
structure, providing spatial organization for a project.
Ifc:FacilityPart allows for the spatial breakdown of built
facilities. Currently, IFC has not introduced entities and
properties specifically related to tunnels. To develop the
ontology for tunnel BIM data, this paper extends the con-
cepts and relationships of tunnel facilities based on existing
IFC entity concepts (Venugopal et al., 2015). The core con-
tent is depicted in Figure 2.

3.2.2. GIS data ontology

To develop a tunnel GIS data ontology based on CityGML,
this paper extracts relevant modules from the CityGML
standard, primarily including the Core module, the
Construction module, and the Tunnel module. These core
concepts are further expanded and refined. Taking the core
concept ontology as an example, the relevant hierarchies
and semantic relationships are illustrated in Figure 3. The
core concept ontology primarily provides definitions for
object concepts, spatial concepts, and geometric concepts,
facilitating the modeling of data pertaining to the tunnel’s
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Figure 2. Tunnel BIM data ontology.
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Figure 3. Tunnel GIS core concept ontology.

surrounding environment (Z.-Z. Hu et al., 2019). The con-
struction ontology serves as a higher-level concept for the
tunnel ontology, offering definitions for basic elements and
spatial concepts, while the tunnel ontology specifically
defines the relevant entities associated with tunnel concepts.

3.2.3. Monitoring data ontology

SSN serves as an ontology for describing sensor networks.
Its objective is to provide a unified semantic description for
sensor networks, facilitating better understanding and inte-
gration of sensor data. SSN follows a modular architecture,
both horizontally and vertically, and comprises a lightweight
core ontology known as sensor, observation, sample, and
actuator (SOSA). SOSA is an ontology for describing sensor
networks, observation data, and actuators. Both SOSA and
SSN are based on open standards and semantic technologies
such as OWL and RDF. They have gained widespread appli-
cation and support in knowledge engineering, often used
together to model and describe sensor networks and related
entities. Based on the concepts and relationships of SSN and
SOSA, the ontology for tunnel monitoring data is developed.
The detailed concepts and relationships are depicted in
Figure 4.

3.2.4. Text data ontology

The text data generated during the actual O&M processes of
tunnels typically includes inspection reports, maintenance
logs, and other documents. These data are generally stored
in databases; however, the design of these databases often
varies significantly among different tunnel projects, making

é CityGML Geometric Concept

— ———> rdfs: subClassOf

it challenging to establish a universal text data ontology
applicable to all tunnels. Therefore, this paper focuses on
methods for developing a text data ontology.

Relational databases (such as MySQL and SQL Server)
store data in the form of tables, with each table containing a
set of related data that typically represents distinct objects.
As the fundamental data structure within a database, a table
consists of rows (records) and columns (fields). Each row
corresponds to a specific entity instance, while each column
represents an attribute of that entity. Moreover, the table’s
attributes commonly include primary keys and foreign keys.
A primary key is one or more fields within the table that
uniquely identifies each row, making it indispensable; a for-
eign key, on the other hand, is a field used to establish a
relationship between two tables. Based on the above ana-
lysis, this paper proposes the following ontology develop-
ment rules to facilitate the development of the text data
ontology: 1) The primary key of the data table is mapped to
the core concept (class) of the ontology. 2) The primary key
serves as a core concept to establish connections with other
fields. 3) Other fields are mapped as object properties or
data properties based on their data types. 4) Foreign keys
connect different data tables. 5) Records within the data
table are mapped as instances.

3.2.5. Image data ontology

The image data generated during tunnel O&M processes
includes inspection images and surveillance videos. The
storage of these data typically requires a combined applica-
tion of relational databases and file systems. Relational data-
bases (such as MySQL and PostgreSQL) can be utilized to
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Figure 4. Tunnel monitoring data ontology.

store the metadata of images and videos, while the actual
image and video files are stored within the file system. The
methodology for developing the ontology of image data is 2.
analogous to that of text data.

3.3. Mapping layer

Sections 3.1 and 3.2 have addressed the instantiation of vari-

ous types of tunnel O&M data and the development of their
corresponding ontologies. This section primarily focuses on 3
establishing associations among the ontologies of different
domains through ontology mapping. Ontology mapping is a
complex process. Based on the research of Ehrig and Staab
(2004), ontology mapping can be divided into six steps:
ontology feature extraction, candidate entity pair selection,
similarity calculation, similarity integration, similarity inter-
pretation, and iterative computation. Building on this foun-
dation, this paper further refines the process, proposing
eight steps that include ontology input, ontology preprocess-
ing, candidate entity pair selection, concept similarity calcu-
lation, comprehensive similarity calculation, mapping result
integration, iterative computation, and ontology output.
Among these, concept similarity calculation and comprehen-
sive similarity calculation are core steps in the ontology
mapping process, as illustrated in Figure 5.

1. Ontology input
Determine the ontologies O; and O, that need to be
mapped based on the various tunnel O&M data. These
ontologies typically adhere to standard formats and

encompass the entity concepts, attributes, and instances
required for subsequent mapping.
Ontology preprocessing
Prior to mapping, ontologies often require a series of
preprocessing operations to ensure that their structure
and format are consistent and standardized. These pre-
processing steps typically include the normalization of
entity naming conventions, unification of format con-
versions, elimination of duplicate entity concepts, and
simplification of complex conceptual hierarchies.
Candidate entity pair selection
Upon completing the preprocessing operations, the next
step is to traverse and retrieve the concepts from the
ontologies. This paper primarily focuses on entity con-
cept pairs {(cl,cz)|c1 € 01,0 € Oz} between two ontol-
ogies, wherein only one candidate entity pair is selected
during a single ontology mapping process.
Concept similarity calculation
The next step involves calculating the similarity for the
selected candidate entity pair. There are various meth-
ods for computing concept similarity; in this paper, it is
focused on calculating text similarity, attribute similar-
ity, structural similarity, and instance similarity.
a. Text-based concept similarity
Edit distance is a string metric that measures the
difference between two string sequences. It repre-
sents the minimum number of operations required
to transform one string into another through inser-
tions, deletions, and substitutions. The smaller the
edit distance, the higher the similarity between the
two strings. The detailed calculation formula is
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Figure 5. Ontology mapping flowchart.

shown in Equation (1):
dis(c1, ¢2)

~ max(jei]. o)

Simstring(ch CZ) =1 (1)
where, |c1| and |c;| represent the string lengths of two
entity concepts. dis(ci,c;) represents the edit distance
between the two entity concepts ¢; and c,, which is the
total number of operations required to transform one
string into the other.
b. Attribute-based concept similarity
The similarity is calculated based on the shared
attributes of the concept nodes, with the specific
calculation formulas given in Equations (2)
and (3):

flaNe)
flaVa)=Ma-a)=1=-Af(a-a)
)

Simproperty(cl > CZ) =

f(C1 - Cz)
flaUc)—f(aNe) fla) >
A= _ fla—c) fla) <
f(C] U C2> —f(Cl N Cz) f(cl U CZ) = (Cl N C2)
1

3)

where, f(c1) and f(c;) represents the number of attrib-
utes of concept ¢; and c¢; f(c; Ncy) represents the
number of common attributes between concepts ¢; and
25 f(c1 Ucy) denotes the total number of attributes of
concepts ¢; and cy; f(c1 — ¢z) represents the number of
attributes that concept ¢; possesses but concept ¢, does
not; and f(c; —¢;) represents the number of attributes
that concept ¢, possesses but concept ¢; does not.
c.  Structural-based concept similarity
The similarity is determined by calculating the geo-
metric distance between two concepts, specifically
the distance from each concept node to the nearest
common subnode, which can then be used to deter-

__| Ontolgy mapping | __|
core steps

mine the semantic distance. It is generally consid-
ered that the smaller the semantic distance, the
higher the similarity between the two concepts. The
specific calculation is given by:

Dep(c|Oy) + Dep(c|O,)
dis(c1,¢2) + 1) x (Dep(O1) + Dep(03))

(4)

Simstructure(cbcz) = (

where the definitions of dis(cy, c;) are as follows:

dis(cy, ¢2) = L(cy,¢) + L(cas €) (5)

where, ¢ is the nearest common parent node of ¢; and
¢, L(c1,c) represents the shortest path from concept ¢,
to ¢, and L(cy, c) represents the shortest path from con-
cept ¢; to c¢. In addition to considering the distance
between the concept nodes and the common parent
node, this formula also takes into account the depth of
the ontology and the depth of the common parent
node in the ontology, denoted as Dep(c|O; ), which rep-
resents the depth of the common parent node in the
ontology O;, and Dep(O,), which represents the depth
of the ontology O;.
d. Instance-based concept similarity

Given two sets A and B, the Jaccard coefficient is

defined as the ratio of the size of the intersection

of A and B to the size of their union as:

_JANB|_ |ANB|

A,B) = =
JAB) = 0B " TA[ ¥ B AN B

(6)

When sets A and B are empty, J(A,B) = 1. Based on
the Jaccard calculation formula, the instance-based con-
cept similarity calculation is given by:

f(|161 n ICZD

7
FATIA) @)

Siminstunce (Cl > CZ) =



where, I, represents the instance set corresponding to
concept ¢, I, represents the instance set corresponding
to concept ¢z, f(|I, N1I,|) denotes the number of ele-
ments in the intersection of I, and I,, and f(|I, UL,|)
represents the number of elements in the union of I,
and [,.
Comprehensive similarity calculation
In step (4), the similarity of multiple candidate entity
pairs is computed. To integrate these similarities, this
step is based on the concept of local confidence, where
local confidences are calculated for text, attribute, struc-
tural, and instance similarities. In existing methods for
integrating similarity, a fixed weight approach is typic-
ally used, which ignores the applicability of different
strategies to different ontologies. By introducing local
confidence, dynamic combinations of multiple mapping
strategies can be achieved, resulting in more reliable
mapping results.
a. Text-based local confidence
In the calculation of text-based local confidence,
the Term Frequency-Inverse Document Frequency
(TF-IDF) method is used. First, the classes and
annotated properties of the two ontologies to be
mapped are concatenated to construct correspond-
ing documents. Then, the TF-IDF method is
applied to vectorize the document content corre-
sponding to the ontologies. Finally, the cosine simi-
larity is used to calculate the similarity between the
two vectors. The specific calculation formula is:

.. __ TFIDF(D,)TFIDF(D;)
" " |TFIDF(Dy)| x | TFIDF(D,)|

(8)

where, D; and D, are the two documents correspond-
ing to the ontology O; and O,. TFIDF(D,) and
TFIDF(D,) are the feature vectors obtained after trans-
forming the documents using the TF-IDF method.
|TFIDF(D;)| and |TFIDF(D,)| represent the norms of
the feature vectors. Through this calculation, the overall
textual similarity between the two ontologies can be
measured.
b. Attribute-based local confidence
The calculation formula for attribute-based local
confidence is given by:
Common(|Prop|) s, o,

)

o =
property min(Prop,, , Prop,, )
where, Common(|Prop|), , represents the number of
shared attributes between the two ontologies, and
min(Prop,, , Prop, ) represents the smaller of the num-
ber of attributes in the two ontologies. This formula
determines the local confidence of attribute similarity
by measuring the proportion of shared attributes in
relation to the total number of attributes in the two
ontologies.
c.  Structural-based local confidence

In the calculation of structural-based local confi-

dence, the following formula is used:
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Sarrze(|Dep\)Obo2 N Same(|8ub|)ol,o2

10
min(C,,, C,,) (10)

Astructure =

where, Same(|Depl),, o, N Same(|Subl), o, represents
the number of concepts in both ontologies that have
the same depth and number of sub-concepts, and
min(C,,, C,,) represents the smaller of the number of
concepts in the two ontologies. This formula primarily
reflects the structural differences between the two
ontologies.
d. Instance-based local confidence
In the calculation of instance-based local confi-
dence, the following formula is provided:

" _ (1 a ) y min {|Io,, |lo, |}
instance — -
[lo,| + [To,| +a) = max {|Io,|, [Io,|}
(11)

where, |Ip,| and |Io,| represent the number of instances
for ontology O; and O,, respectively, and a is a tuning
factor to ensure proper scaling, typically set to a con-
stant value, a = 1. From the formula, it can be seen
that instance-based local confidence is positively corre-
lated with the sum of the number of instances in the
mapped ontologies, and negatively correlated with the
difference in the number of instances between the
mapped ontologies.

In practice, when calculating the local confidence under
different strategies, a confidence threshold is often pre-
set. When the calculated local confidence is below this
threshold, the confidence of the similarity calculated by
that strategy is considered low and can be approxi-
mated as 0. Ultimately, this process yields a compre-
hensive similarity score for the candidate entity concept
pairs. The calculation formula is presented as follows:

Si
Sim(c1, ;) :M (12)

>k O

where k € {string, property, structure, instance}, o, Simy
represent the local confidence and concept similarity
based on the k strategy, respectively.

Mapping result integration

Select an appropriate similarity threshold to integrate
candidate entity pairs that meet or exceed this threshold
into the ontology, thereby establishing equality relation-
ships between the two concepts. During the integration
process, it is essential to ensure the correctness and
consistency of the mapping results. In cases of conflict,
manual corrections will be necessary.

Iterative computation

After the calculation for the candidate entity pair is
completed, the process returns to step (3) to select the
next candidate entity pair. This cycle continues until all
candidate entity pairs have been traversed, at which
point the computation concludes.
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8. Ontology output
Output the final integrated target ontology. This output
should encompass all mapping results while maintain-
ing consistency and completeness. The resulting ontol-
ogy can be utilized for further data integration,
querying, and analysis.

3.4. Application layer

3.4.1. Overview of tunnel structural health grading
strategy

Building on the previously discussed data layer, ontology
layer, and mapping layer, this section proposes a structural
health grading strategy for tunnels. The strategy comprises
several steps: 1) Application ontology development. This
step involves O&M personnel inputting corresponding
requirement statements into the tunnel multi-source hetero-
geneous O&M data management platform to develop the
relevant application ontology based on O&M needs. 2)
Mapping and semantic query. Utilizing the ontology map-
ping methods in the mapping layer, the developed applica-
tion ontology can be associated with the tunnel O&M data
ontology. This mapping allows for the extraction of con-
cepts from different O&M data ontologies through semantic
query, thereby facilitating access to the required tunnel
O&M data from diverse sources and structures. 3) Tunnel
structural health assessment. Using fuzzy comprehensive
evaluation methods, the associated multi-source heteroge-
neous O&M data is subjected to comprehensive analysis and
computation, thereby obtaining structural health assessment
values for the tunnel at different levels. 4) Maintenance
method selection. Referencing relevant regulatory standards,
an assessment of the tunnel structural health grading is con-
ducted. Based on the tunnel structural health grades, appro-
priate O&M strategies are selected.

With the core objective of this strategy centered on the
assessment of structural health status, the effective utiliza-
tion of integrated multi-source heterogeneous data necessi-
tates a systematic and structured evaluation approach. To
this end, the present study establishes a four-level hierarch-
ical evaluation index system, comprising the following levels:
1) specific tunnel monitoring indicators (including stress,
displacement, crack width, electromechanical status, etc.), 2)
tunnel cross-sections, 3) tunnel segments, and 4) the overall
tunnel structure. Concurrently, in accordance with the
Technical Specifications for Highway Tunnel Maintenance
(JTG H12-2015), the structural safety condition is catego-
rized into five distinct grades: Grade 1 (Intact condition),
Grade 2 (Slight damage), Grade 3 (Moderate damage),
Grade 4 (Severe damage), and Grade 5 (Dangerous condi-
tion). To enable quantitative assessment, a fuzzy comprehen-
sive evaluation method is employed, wherein expert-defined
threshold intervals are integrated with weightings derived
through AHP method. This methodological framework facili-
tates the fusion of tunnel O&M data into a unified, quantifi-
able health index for each tunnel section.

3.4.2. Application ontology development

O&M personnel can input various natural language state-
ments into the tunnel multi-source heterogeneous O&M
data management platform according to operational needs,
thereby developing different application ontologies. The spe-
cific construction process is illustrated in Figure 6. Initially,
a tokenization tool is employed to segment the input natural
language statements, resulting in the corresponding toke-
nized sequence of statements. Next, several core terms are
identified, and the entity relationships among core terms are
established. Finally, the corresponding application ontology
is generated. O&M personnel may develop corresponding
application-specific ontologies based on actual requirements,
thereby enabling the retrieval of targeted tunnel O&M data.

Using the tunnel structural health assessment as an
example, it is essential to assess and classify the structural
health of different segments and cross-sections of the tunnel.
Based on the review of relevant literature on tunnel struc-
tural health assessment in Section 2, it is evident that the
evaluation of tunnel structural health requires the establish-
ment of a multi-tiered system of health indicators. This sys-
tem generally includes levels such as tunnel monitoring
indicators, specific tunnel components, tunnel
sections, and tunnel segments. In this paper, a four-tier
structural health assessment ontology is developed, as illus-
trated in Figure 6.

This ontology is prefixed with “TA” and encompasses
structural health evaluation information across various levels
of the tunnel. Specifically, TA:TunnelValue, TA:TunnelPart
Value, TA:TunnelCrossSectionValue, TA:MonitorIndicator
Value represent the overall structural health assessment
value of the tunnel, the structural health assessment value of
specific monitored segments, the structural health assess-
ment value of tunnel cross-sections, and the structural
health assessment value of a specific monitoring indicator,
respectively. Among these assessment values, the higher-tier
structural health assessment values are determined by the
lower-tier ones, with the structural health assessment value
of tunnel monitoring indicators being influenced by specific
monitoring results, which include sensor data, text data,
image data, and other types of heterogeneous O&M data for
the tunnel.

Cross-

3.4.3. Mapping and semantic query

After completing the development of the application ontol-
ogy for tunnel structural health assessment, the application
ontology is mapped to the tunnel multi-source heteroge-
neous O&M data ontology. This mapping enables the
extraction of the required concepts and instances from the
O&M data ontology. The ontology mapping method
employed is based on the comprehensive similarity mapping
method proposed in the mapping layer. Different types of
O&M data provide varying information regarding tunnel
structural health assessment. Monitoring data, text data and
image data primarily offer specific structural health moni-
toring indicators for the tunnel. BIM and GIS data mainly
provide detailed structural and locational information about



STRUCTURE AND INFRASTRUCTURE ENGINEERING . 1

1.Natural
language
input

Establish a system for tunnel structural health assessment, including tunnel monitoring
indicator values, tunnel cross section values, tunnel part values, and overall tunnel values

Q Tokenization and Key Term Extraction

2. Tokenized
sequence of

Establish / a / system / for / tunnel / structural / health / assessment /, / including / tunnel /
/ monitoring / indicator / values /, / tunnel / cross / section / values /, / tunnel / part /

statement | yalyes /, / and / overall / tunnel / values
Q Supplementing Entity Relationships
® Tunnel structural health assessment includes tunnel monitoring indicator values, tunnel
3, Entity cross section values, tunnel part values, and overall tunnel values.
Relationship | ® Tunnel cross section value is determined by tunnel monitoring indicator value.
Construction

® Tunnel part value is determined by tunnel cross section value.
® Tunnel value is determined by tunnel part value.

@ Application Ontology Development

{ TA:TunnelStructureHealthGrading ]

4. Application

TA:include

ontology
output \|r

5 o TA:determinedB = A TA:determinedBy
TA:MonitorIndicatorValue —— TA:Tunnel(fmssSecuonValue]“A—Mv

TA:determinedBy

TA:TunnelPartValue

TA:TunnelValue

Figure 6. Application ontology development flowchart.

the tunnel. Part of the ontology mapping is illustrated in
Figure 7.

After obtaining the mapping results between the applica-
tion ontology and the tunnel heterogeneous O&M data
ontology, the required O&M data instances can be extracted
using SPARQL Protocol and RDF Query Language
(SPARQL) queries. SPARQL is a query language designed
for querying and manipulating RDF data (Zhong et al.,
2018). By importing ontology and instance data into
GraphDB, SPARQL statements can be customized to achieve
queries across heterogeneous information.

3.4.4. Structural health assessment

Upon obtaining the necessary heterogeneous O&M data for
the tunnel, the next step involves a comprehensive utiliza-
tion and analysis of these data to accurately assess the struc-
tural health status of the tunnel. This analysis lays the
foundation for subsequent strategy selection in tunnel main-
tenance. In the acquired heterogeneous O&M data, BIM
data primarily provides detailed structural and locational
information about the tunnel. GIS data offers information
about the surrounding environment and supplementary
descriptions of relevant locations. Monitoring data encom-
passes long-term indicators such as stress, strain, and settle-
ment; image data focuses on monitor indicators suitable for
periodic inspections, such as tunnel cracks and structural
damage; while text data primarily presents monitor indica-
tors related to electromechanical equipment, traffic signs,
and tunnel entrances in a text format.

The health values of monitor indicators reflected by the
text and image data are determined by relevant O&M per-
sonnel. For the health values represented by the monitoring
data, a fuzzy comprehensive evaluation method is predom-
inantly employed for calculation. Additionally, BIM and GIS
data enhance the information regarding the tunnel’s cross-
sections, segments, and locations by correlating with the
O&M data. The overall methodological flowchart is illus-
trated in Figure 8.

To assess the tunnel structural health based on fuzzy
evaluation methods, corresponding factor sets for each hier-
archical health assessment value are established. The rele-
vant symbols, their corresponding relationships with tunnel
structural health assessment ontology entities at various lev-
els, and the specific meanings of each symbol are detailed in
Table 1.

In accordance with the tunnel structure evaluation
method of Technical Specifications for Highway Tunnel
Maintenance, the assessment of tunnel structural health is
categorized into five grades: Grade 1, Grade 2, Grade 3,
Grade 4, and Grade 5. These grades correspond to intact
condition, slight damage, moderate damage, severe damage,
and dangerous condition, respectively. Based on this classifi-
cation, the evaluation set is defined as:

‘7 = {V1>V2>V3:V4:V5} (13)

where vi,v,,v3,v4, Vs correspond to the previous structural
health condition grades, respectively. To facilitate quantita-
tive analysis of different grades, a grade scoring matrix is
constructed as:
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Table 1. The multi-level factor sets for tunnel structural health assessment.
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Level Ontology class Factor set Description

| TunnelValue T={T1} T represents the overall assessment value of the tunnel structural
~ health.

Il TunnelPartValue P=AP, ....Pi, ....Pn} P; represents the structural health assessment value for the i-th
~ section of the tunnel.

1] TunnelCrossSectionValue CG={G....Gj -...Gn } G, represents the structural health assessment value for the j-th
~ cross-section within the i-th monitoring section of the tunnel.

1\ MonitorIndicatorValue I={h ..ol o} Ix represents the health assessment value for the k-th monitor

indicator within the tunnel.

type | trapezoidal distribution| |

triangular distribution

| | trapezoidal distribution
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Figure 9. Membership distribution, function and graph.
G = [5, 4,32, 1] (14) Table 2. The formula for calculating the multi-level structure health assess-

where Grade 1 corresponds to 5, and the rest follow in
descending order.

In fuzzy comprehensive evaluation, membership func-
tions are utilized to describe the membership relationship of
actual data to the evaluation set (Lin et al., 2022). Common
membership functions include rectangular, triangular, trap-
ezoidal, parabolic, and normal distribution (T. H. Y. Li
et al,, 2013). In actual engineering, the health status of vari-
ous monitoring factors generally conforms to a linear rela-
tionship with their monitoring values. Therefore, this paper
employs a combination of triangular and trapezoidal distri-
bution to construct a 5-grade membership function. The
function is employed to describe the membership degree of
actual data to different grades of structural health condi-
tions. As illustrated in Figure 9, x represents the actual
measurement of a monitoring indicator, and ky, k, k3, k4 are
the classification boundaries for the monitoring indicator,
which need to be determined based on the specific facility
conditions. The relationships between ki,k, k3, ks and
ai,as, a3, ds, as are as follows. Typically, a; is chosen to be
0.8k;, and the formulas for each membership function can
be derived accordingly:

k 05 05 0 0 O a1
kk] |0 05 05 0 0 a2
k| | 0 0 05 05 0 a3 (15)
ks 0 0 0 05 05]]pz

Based on the five grades defined in the evaluation set, a
fuzzy comprehensive judgment matrix is constructed. For a
monitoring indicator I corresponding to the set of monitor

ment value.

Level Factor set Formula

[ T={r} T=Y" o) xP

I P={Pi,...P, ....Pn} Pr=30 o(Gy) x G
Il G={G1 -Gy --.Gin } Gy = Do (k) X I

indicators I, the membership degree matrix for the actual
measurement x of the monitoring indicator is given by:

Ry = [A1(x), Az (x), A3 (x), As(x), As(x)] (16)

The health assessment value of this monitoring indicator
is calculated by:

I =GxR] (17)

The health values Iy of monitor indicators reflected by
the text and image data are determined by relevant O&M
personnel and are collectively categorized within I. The cal-
culation of the tunnel health assessment values for each
cross-section, section, and the overall structure, is illustrated
in Table 2, where ®(P;) represents the weight value of each
section of the tunnel, generally determined based on the
length of the tunnel section; w(C;) represents the weight of
each cross-section of the tunnel, unless specified, it is gener-
ally assumed that the weight values of each cross-section are
equal; o(I;) represents the weight of each monitor indicator,
determined by AHP.

3.4.5. Maintenance strategy selection

After calculating the health assessment values for various
levels of tunnel structure, the obtained values are associated
with the developed tunnel structural health assessment
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ontology. Subsequently, a series of specific semantic rules
for tunnel structural health grades are defined to achieve a
graded assessment of tunnel structural health. Using tunnel
overall structural health assessment values as an example,
the following rule can be derived based on the fuzzy com-
prehensive evaluation matrix constructed in Section 3.4.3.
Here, TA:hasRate is an object property representing the
structural health grade of the tunnel entity:

lessThan(TunnelValue, 1.5)

greaterThanOrEqual( TunnelValue, 1) } => hasRate(Tunnel, 5)

By defining semantic rules for the structural health of
different tunnel levels, structural health grades can be
obtained for various monitoring indicators, monitoring
cross-sections, tunnel segments, and the overall tunnel.
Once the structural health grade of a tunnel has been deter-
mined, appropriate and targeted maintenance strategies can
be deployed. In alignment with relevant standards, a system-
atic mapping is established between structural health grades
and the corresponding O&M interventions, as detailed in
Table 3.

Each grade reflects a distinct physical condition of the
tunnel structure and necessitates a tailored response. 1)
Grade 1: The overall tunnel structure is in sound condition,
with no abnormalities or only minor, non-progressive
anomalies. No immediate action is required; routine inspec-
tions should continue at the standard frequency. 2) Grade 2:
The tunnel structure exhibits minor deterioration but
remains stable. Regular monitoring of the affected areas is
advised, including inspections of crack width, joint integrity,
and electromechanical system performance. 3) Grade 3:
Moderate structural damage is present, though deterioration
progresses slowly. Localized reinforcement is recommended,
including crack injection, waterproof lining repairs, and
grouting in zones exhibiting elevated strain. 4) Grade 4:
Severe structural deterioration is observed, necessitating
immediate maintenance action. Reinforcement measures
may involve the installation of steel ribs, fiber-reinforced
polymer (FRP) wrapping, or shotcrete application. 5) Grade
5: The tunnel is in a critically compromised state, requiring
emergency intervention. Full closure is warranted, followed
by urgent structural assessment and reinforcement, which
may include partial reconstruction to restore structural
integrity.

Following the selection of overall tunnel-level mainten-
ance strategies, more granular measures must be imple-
mented based on specific monitoring indicators
corresponding to different tunnel segments and cross-
sections. These localized indicators guide targeted interven-
tions to ensure structural integrity and serviceability. For
instance, when excessive cracking is detected in the tunnel
lining, remedial actions such as epoxy injection, crack seal-
ing, and renewal of waterproof linings should be under-
taken. In cases of significant displacement or settlement,
grouting reinforcement of the foundation and surrounding
rock mass is necessary to restore structural stability. Should
water leakage occur, corrective measures may include drain-
age system repairs and reinforcement of the waterproofing

layer to mitigate moisture ingress. In the event of corrosion
of metallic components, replacement with corrosion-
resistant materials is recommended to prolong service life.
For more severe structural deformations, comprehensive
strengthening techniques such as steel rib support, FRP
wrapping, and structural realignment should be employed to
restore the tunnel’s designed geometry and load-bearing
capacity. By linking the evaluation results with well-
established repair and reinforcement methods, the frame-
work supports precise, data-driven maintenance decisions.
Additionally, health grades can be used to prioritize limited
resources and plan long-term maintenance schedules.

4. Validation of the proposed framework
4.1. Case study

4.1.1. Case overview

The Tanglang Mountain Tunnel, completed in 2006, is situ-
ated in the Nanshan District of Shenzhen, traversing the
Tanglang Mountain. This dual-tube six-lane highway tunnel
is arranged separately for traffic traveling in opposite direc-
tions. Using Nanshan District toward Longgang District as
the forward direction, determine the left and right tunnels
accordingly. The axial distance between the left and right
tunnels is 38 meters, with the left tunnel spanning a total
length of 1719.5 meters and the right tunnel spanning 1711
meters. Taking into account various factors such as adverse
geological conditions, structural defects, and safety hazards
at different locations along the tunnel, the tunnel has been
subdivided into distinct segments. Each segment prioritizes
different monitoring parameters, with several monitoring
sections selected within each segment for focused
surveillance.

Within the tunnel, four types of sensors are deployed:
laser rangefinders, static leveling instruments, crack gauges,
and surface strain gauges. These sensors facilitate real-time
monitoring of various parameters. Different monitoring
projects within the same monitoring section are arranged
along the same cross-section, facilitating comparative ana-
lysis of monitoring data. Laser rangefinders are positioned
at the right haunch of the monitoring section, while surface
strain gauges are symmetrically placed at the crown of the
arch and at both the left and right haunches of the monitor-
ing section. Depending on site conditions, static leveling
instruments are positioned at the haunches of the monitor-
ing section. Crack gauges are conducted at the widest point
of the crack, with one monitoring point installed. The
detailed monitoring indicators, measurement ranges, and
number of deployments for each sensor are shown in Table
4. This study primarily focuses on several segments of the
left tunnel of the Tanglang Mountain Tunnel, with sensor
placements illustrated in Figure 10.

4.1.2. Data instantiation and semantic query

According to Technical Guidelines for Long-term
Monitoring of In-service Highway Tunnels (T/CHTS 10021-
2020) and Technical Specifications for Highway Tunnel



Table 3. Maintenance strategies for varied tunnel structural health grades.
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Grade Value range Evaluation set Description Maintenance strategy

Grade 1 [4.5,5] v Intact condition Routine maintenance

Grade 2 [3.54.5) va Slight damage Conduct surveillance on damaged structural segments and
undertake necessary maintenance when essential.

Grade 3 [2.5,3.5) V3 Moderate damage Conduct focused surveillance on compromised structural
segments and implement localized maintenance and
repairs as required.

Grade 4 [1.5,2.5) Vg Severe damage Swiftly implement remedial measures for structural ailments

Grade 5 [1,1.5) Vs Dangerous condition Promptly close the tunnel for necessary treatment. In

exceptional circumstances, undertaking localized
reconstruction or renovation may be imperative.

Table 4. Basic information of sensors.

Sensor Monitoring item Range Installation number
Laser Range Finder Peripheral displacement 0.05 ~40m 28
Static Leveling Instrument Tunnel settlement 0.2~ 100mm 4
Crack Gauge Crack width 0~ 100mm 2
Surface Strain Gauge Arch ring circumferential strain ~ arch crown longitudinal strain 0~ 3000pe 12

Figure 10. Pictures and sensor placements of Tanglang Mountain tunnel.

Table 5. Tunnel monitoring cross-section.

ZK1+000 ZK0+900

| I
| i
| I
I N " I
E (Nanshan side) Tt (Longgang side i
E ZK1+550 S ZK0+245 i
| i
| I
! I
E Right tunnel i i Right tunnel i
| | (Nanshan side) | | | |(Longgang side)| |
| 1 YK1+450 ! !

[>—< Laser Range Finder EB Surface Strain Gauge v Static Leveling Instrument @ Crack Gauge YK1+500

Left tunnel

Monitoring part Potential structural safety risk

Monitor indicator Monitoring cross-section

ZKO0 + 900~ZK1 + 000 Tunnel Eccentric Loading

ZK1 4 100~ZK1 + 400

ZK1 4 500~ZK1 + 600

Differential Settlement and Structural
Shrinkage

Relaxation Loading of Surrounding
Rock

Peripheral displacement, arch ring ZK0 + 900
circumferential strain, ZKO0 + 950
electromechanical systems, crack ZK1+ 000
numbers

Peripheral displacement, tunnel ZK1+100
settlement, arch crown longitudinal ZK1 + 200
strain, electromechanical systems, ZK1+ 300
crack numbers ZK1 + 400
Peripheral displacement, crack width, ZK1 + 500
arch crown longitudinal strain, ZK1+515
electromechanical systems, crack ZK1+550
numbers ZK1 + 600

Maintenance (JTG HI12-2015), considering the geological
conditions, structural anomalies, and safety hazards at vari-
ous locations within the tunnel, the tunnel has been seg-
mented into distinct sections. Each section has specific focus
areas for monitoring, and several monitoring cross-sections
have been selected within each section for detailed scrutiny.
This paper analyzes three key monitoring sections, with
detailed information outlined in Table 5.

The data from the Tanglang Mountain Tunnel during
the O&M process is associated with the respective O&M
data ontologies. The detailed maintenance data selected is
illustrated in Table 6. Among these, the monitoring data
from March 17, 2023 to June 13, 2023, is selected, reflecting
structural monitoring indicators such as displacement,
settlement, stress, and strain. The text data primarily indi-
cates the daily operational status of the tunnel’s
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Table 6. Overview of Tanglang Mountain tunnel maintenance data.

Data type Source Format Size Data and ontology association tool
BIM data Design models ifc 226MB IFCtoRDF

Monitoring data Sensors .csv 205MB D2RQ

Text data inspection reports, maintenance logs, regulatory standards. pdf 131MB D2RQ

Image data Inspection images » surveillance videos .png 3.52GB D2RQ

Table 7. Health monitoring intervals for partial monitoring indicators.

Peripheral Tunnel Crack Arch ring circumferential Arch crown longitudinal
Grade displacement (mm) settlement (mm) width (mm) strain (ue) strain (ue)
Grade 1 [0,5] [0,5] [0,0.1] [0,50] [0,50]
Grade 2 [5,15] [5,10] [0.1,0.5] [50,100] [50,100]
Grade 3 [15,30] [10,20] [0.5,1.0] [100,200] [100,200]
Grade 4 [30,60] [20,50] [1.0,5.0] [200,400] [200,400]
Grade 5 [60, +oc] [50, 4o¢] [5.0, +o¢] [400, +o¢] [400, +o0]

electromechanical systems, while the image data mainly
documents the number of cracks in the tunnel. BIM data
provide information on the tunnel segments and cross-
sectional locations. Utilizing the mapping results from the
mapping layer, a multi-source heterogeneous data ontology
encompassing all actual O&M data for the tunnel is ultim-
ately obtained. Subsequently, through SPARQL queries and
the mapping relationships between the application ontology
and the tunnel heterogeneous O&M data ontology, the
required heterogeneous O&M data can be queried.

4.1.3. Structural health assessment

Following the tunnel structural health assessment value cal-
culation method outlined in Section 3.4.4, the monitoring
intervals for each health monitoring indicator are deter-
mined based on actual tunnel conditions and relevant litera-
ture (Dong et al., 2008). The membership functions for each
indicator are determined and the corresponding fuzzy com-
prehensive judgment matrices are established. Multiplying
these matrices by the grade scoring matrix G = [5,4,3,2,1]
yields the structural health assessment values for monitoring
indicators (Table 7).

After calculating the structural health assessment values
for different indicators, it is also necessary to establish the
weights for each indicator. This study, referencing relevant
literature (Zhong et al., 2018), utilizes the AHP to determine
the weights of each indicator. Through consultation with
relevant tunnel experts and engineers, the monitoring indi-
cators involved in this engineering project are compared in
terms of their weights. The exponential scale method ei to
ei is used to construct the judgment matrix. Taking
ZK1+200 as an example, three monitoring indicators are
set as follows: peripheral displacement (I;), tunnel settle-
ment (I), and vault longitudinal strain (I3). The judgment
matrix is constructed as follows:

(18)

After normalization calculations, the weight vector is
obtained:

Table 8. Structural health assessment value for cross-section ZK1 + 200.

G o (k) I
4.45 0.307 5.00
0.506 3.93
0.186 5.00
0.307
W = | 0.506 (19)
0.186
The consistency index (CI) is calculated by:
N —
cr="mx"" . 0.006 (20)
n—1
The consistency rate (CR) is calculated by:
CI
CR=—~=0.010 < 0.1 21
R 21

Since CR < 0.1, the consistency ratio is less than 0.1,
indicating that the consistency of the judgment matrix is
acceptable. Therefore, the calculation results of the struc-
tural health assessment value for the ZKI+200 cross-
section are shown in Table 8.

Table 8 indicates that the assessment values for three
indicators of the cross-section ZK1+200 are as follows.
Peripheral displacement, tunnel settlement, and arch crown
longitudinal strain are rated at 5.00, 3.93, and 5.00. After
constructing the judgment matrix using AHP, the final
weight values for the three indicators are determined. The
cross-section  structural health assessment value for
ZK1 4200 is calculated to be 4.45. The computation process
for other cross-sections is similar to the previous procedure.
By performing a weighted summation of the health assess-
ment values of each monitoring indicator and their respect-
ive weights, the structural health assessment values can be
ultimately derived for the corresponding cross-sections. And
then the mean value of these cross-sections within the same
section is computed to represent the structural health assess-
ment value for that specific section. For distinct sections,
the calculation of the tunnel’s overall structural health
assessment value is conducted based on the lengths of the
sections.



Table 9 shows that the structural health assessment val-
ues for the three selected tunnel sections are 4.20, 4.47, and
4.48, respectively. The overall structural health assessment
value of the tunnel is 4.43, indicating that the overall struc-
tural health condition of the tunnel is good. However, there
are also some cross-sections with relatively low structural
health assessment values, such as ZKO0+ 900, ZK1 + 000,
and ZK1+ 600. These sections require specific remediation
measures based on the monitoring indicators.

4.1.4. Maintenance strategy selection

Semantic web rule language (SWRL) is a language designed
for representing rules on the semantic web (Z.-Z. Hu et al,,
2022). It empowers users to define rules based on OWL
ontology, facilitating inference and queries in knowledge
representation. SWRL rules permit the assertion of logical

Table 9. Structural health assessment values for various hierarchical levels of
the Tanglang Mountain tunnel.

T o(Py) P; o(Gj) G Monitor cross-section
4.43 0.17 4.20 033 3.69 ZKO0 + 900
0.33 5.00 ZK0 + 950
0.33 3.92 ZK1+ 000
0.66 4.47 0.25 4.41 ZK1+ 100
0.25 4.45 ZK1+ 200
0.25 4.52 ZK1+300
0.25 4.51 ZK1+ 400
0.17 4.48 0.25 5.00 ZK1+ 500
0.25 4.35 ZK1+515
0.25 493 ZK1+ 550
0.25 3.65 ZK1+ 600
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relationships within the ontology, thus supporting more
advanced semantic reasoning (Chen & Luo, 2019).

Utilizing SWRLTab plugin in protégé, inference can be
achieved for the health grades of different hierarchical levels
within the tunnel. The entire reasoning process consists of
four procedures, as shown in Figure 11. 1) The established
reasoning rules are input into SWRLTab. 2) The ontology
and the established rules are then transmitted to the reason-
ing engine, including 5 rules, 27 classes, 87 entities, and 815
axioms. 3) The reasoning engine is executed, resulting in
260 axioms inferred. 4) The inferred axioms are transmitted
back to the ontology model, thereby achieving knowledge
reasoning.

Through the above reasoning process, the structural
health assessment grades of each level of the Tanglang
Mountain Tunnel can be determined. As shown in Figure
12, the structural health assessment grades for the three
selected tunnel sections are 2, 2, and 2, respectively. The
overall structural health assessment grade of the Tanglang
Mountain Tunnel is 2. Based on the current condition of
the Tanglang Mountain Tunnel and according to the main-
tenance strategy of application layer, regular monitoring of
the affected areas should be conducted, including inspec-
tions of crack width, joint integrity, and electromechanical
system performance. With respect to specific tunnel moni-
toring indicators, consider the example of tunnel cross-
section ZK1+ 200. The predominant structural concern at
this location is excessive settlement, which may compromise
structural performance if left unaddressed. Accordingly, tar-
geted remediation measures such as grouting behind the

Active ontology % Entities X Individuals by class x DL Query x OntoGraf x SWRLTab x

¥ Rule01
¥ Rule02
¥ Rule03
¥ Rule04
7 Rule05

Rules Asserted Axioms Inferred Axioms OWL 2 RL

I OWL axioms successfully transferred to rule engine.

| Number of SWRL rules exported to rule engine: 5

| Number of OWL class declarations exported to rule engine: 27

| Number of OWL individual declarations exported to rule engine: 87 h

| Number of OWL object property declarations exported to rule engine: 18 1

1 Number of OWL data property declarations exported to rule engine: 4 :

! Total number of OWL axioms exported to rule engine: 815 1
1

Control

: Number of inferred axioms: 260

| The process took 226 millisecond(s). 1
! Look at the 'Inferred Axioms' tab to see the inferred axioms. :

| Successfully transferred inferred axioms to OWL model. 1

sosa:ObservableProperty(?op) * swrlb:lessThan(?min, 1.5) * swrib:greaterThanOrEqual(?min, 1) * TA:...
swrib:lessThan(?min, 2.5) * sosa:ObservableProperty(?op) * swrib:greaterThanOrEqual(?min, 1.5)* T...
swrib:greaterThanOrEqual(?min, 2.5) # sosa:ObservableProperty(?op) * swrlb:lessThan(?min, 3.5)* T...
sosa:ObservableProperty(?op) * swrib:lessThan(?min, 4.5) * TAchasNumber(?miv, ?min) * TAhasValu...
sosa:ObservableProperty(?op) * TAchasNumber(?miv, ?min) * TA:hasValue(?op, ?miv) * swrlb:greater...

Comment
Grade5:The inference rule for tu...
Grade4:The inference rule for tu...
Grade3:The inference rule for tu...
Grade2:The inference rule for tu...
Grade1:The inference rule for tu...

}
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(2) OWL axioms transferred to rule engine

|

Run Drools

\— (3) Execution of rule engine
1
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Figure 11. Reasoning process.
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Figure 12. Structural health grade for Tanglang Mountain tunnel.

lining and arch crown support installation should be consid-
ered in subsequent maintenance planning.

4.2. Comparison with other methods

The proposed method is analyzed in terms of data fusion
accuracy, completeness, and efficiency, and compare it with
other methods:

Accuracy: The accuracy of data fusion in the proposed
framework relies on whether the ontology mapping process
can establish the relationships between different O&M data
ontologies. To evaluate the accuracy of the ontology map-
ping, the standard benchmark from the Ontology
Alignment Evaluation Initiative was selected for testing. The
evaluation is carried out using parameters such as precision,
recall, and F1 score, and the results are compared with tra-
ditional methods such as ASMOV, RiMOM, OntoDNA, and
Falcon. As illustrated in Table 10, the proposed ontology
mapping method performs better in terms of selected
parameters, showing a certain level of improvement over
previous methods.

Completeness: Compared with previous knowledge-
driven (Nunez & Borsato, 2018) and data-driven approaches
(Zhao et al., 2019), the framework encompasses a broader
range of O&M data types, as illustrated in Table 11. By
employing ontology for the unified modeling of various
O&M data, it facilitates effective interactions among differ-
ent data types, thereby reducing the potential decision-
making errors that may arise from dependence on singular
data sources.

Efficiency: Thanks to the semantic modeling and integra-
tion capabilities of ontologies, the proposed framework ena-
bles a fully automated process that encompasses data
instantiation, semantic querying, structural health assess-
ment, and decision-making. It achieves millisecond-level
computation in data instantiation, mapping discovery, data
extraction, and semantic reasoning, allowing for real-time
monitoring of the tunnel structural health at all levels and
significantly improving the efficiency of O&M decision-
making. Especially in terms of data extraction, compared to
traditional data-driven and manual search methods, the pro-
posed framework shows significant improvements in speed.



Table 10. Comparison of ontology mapping methods.

Algorithm Precision Recall F1 score
ASMOV 0.92 0.87 0.89
RIMOM 0.92 0.88 0.90
OntoDNA 0.86 0.85 0.86
Falcon 0.92 0.88 0.90
The proposed framework 0.98 0.95 0.96

Table 11. Comparison of involved data of different methods.

The proposed  The knowledge-driven  The data-driven

Involved data framework method method
BIM data N N

GIS data N

Monitoring data J N

Text data N J

Image data v

Table 12. Time required for each function within the framework.

Framework function Time Unit

Data instantiation 83.5 ms per instance
Mapping discovery 92.3 ms per entity
Data extraction 16.67 ms per instance
Semantic reasoning 0.87 ms per axiom

Some required time for framework function is shown in
Table 12.

4.3. Discussion

In the case section, this study specifically analyzes three seg-
ments of the Tanglang Mountain Tunnel. BIM data, moni-
toring data, text data, and image data collected during the
tunnel’s O&M processes are associated with the developed
ontologies. The developed application ontology model is
mapped to the tunnel O&M data ontologies, enabling the
retrieval of various instances of multi-source heterogeneous
O&M data through corresponding SPARQL queries.
Utilizing the proposed tunnel structural health assessment
strategy, these diverse O&M data are integrated and ana-
lyzed to obtain structural health assessment values for each
level of the tunnel structure. Based on semantic reasoning
rules and health assessment values, the structural health
grading of the tunnel is automatically determined, assisting
O&M personnel in selecting appropriate maintenance strat-
egies. According to the results, the overall structural health
assessment values of the selected three segments are all 2 or
above, indicating a relatively good structural condition of
the overall tunnel. This is consistent with the latest manual
inspection report results, demonstrating the rationality of
this strategy. For tunnel monitoring cross-sections with a
structural health assessment grade of 2, targeted measures
can be carried out for monitoring indicators with lower
structural health assessment values.

The proposed framework exhibits strong scalability and
generalizability, allowing for flexible extension across various
dimensions, including types of O&M data, application
ontology, monitoring indicators, and structural health
assessment systems. This adaptability enables its application
across tunnels of different scales and configurations. As an
engineering case, the Tanglang Mountain Tunnel is
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employed to demonstrate the framework’s applicability. The
tunnel encompasses a wide array of real-world O&M data
types and embodies most of the typical characteristics of
conventional tunnels, thus serving as a representative case
study. To further validate the robustness and versatility of
the proposed framework, additional O&M datasets from
diverse tunnel projects will be collected and analyzed in
future work. These efforts aim to assess the framework’s
performance across multiple tunnel scenarios and support
its continuous refinement and broader practical adoption.

Compared with existing methods, the proposed frame-
work shows improvements in terms of accuracy, complete-
ness, and efficiency of O&M data fusion. First, it
comprehensively utilizes different similarity concepts such
as text, attribute, structure, and instance, and introduces
local confidence calculation formulas for each type of simi-
larity, better establishing the relationships between different
O&M data ontologies. Second, it integrates various hetero-
geneous data sources to assess the structural health of the
tunnel, reducing potential decision-making errors that may
arise from reliance on a single data source, thereby enhanc-
ing accuracy and comprehensiveness. Finally, it achieves
millisecond-level fully automated computation and reason-
ing through steps such as data ontology instantiation, ontol-
ogy mapping, data extraction, and semantic reasoning,
significantly improving the efficiency of data fusion.

Although initial progress has been made in tunnel het-
erogeneous data integration and structural health assess-
ment, it is undeniable that there are still several limitations
in this study, which are summarized as follows:

1. In establishing mapping relationships among different
ontologies, this study primarily employs methods based
on concept similarity and local confidence, yielding
favorable outcomes. However, it is noteworthy that
while this approach is effective for smaller ontologies, it
becomes time-intensive and laborious when applied to
large-scale projects with numerous ontology entities
and attributes. Consequently, future plans include
investigating automated ontology mapping to more effi-
ciently establish mappings and associations across vari-
ous ontologies.

2. In tunnel structural health assessment, this study mainly
employs a tunnel structural health assessment strategy
based on fuzzy comprehensive evaluation. Although this
method partially addresses the difficulty of quantita-
tively evaluating tunnel structural health, there is still
subjectivity in the specific indicator level interval div-
ision and the determination of target layer object
weights. Thus, further optimization is required in the
future.

3. The present study primarily focuses on periodic struc-
tural health assessment of tunnels and does not yet
incorporate mechanisms for real-time response and
maintenance. Future extensions of the proposed frame-
work may explore the integration of real-time monitor-
ing data through the deployment of edge computing
nodes, enabling continuous acquisition and on-site
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processing of structural behavior metrics. By leveraging
the expert-defined threshold boundaries established in
this study, the system could incorporate an automated
alert module, triggering maintenance recommendations
when specific indicators exceed predefined limits.
Additionally, Al-assisted decision-making may be
employed to enhance predictive capabilities, enabling
health trend forecasting and automated maintenance
strategy recommendation.

5. Conclusions

The data generated during tunnel maintenance is both
multi-source and structurally heterogeneous. By integrating
heterogeneous data through unified modeling, the tunnel’s
structural health can be accurately assessed. This study pro-
poses an ontology-based framework for tunnel O&M data
integration, designed to support structural health assess-
ment, thereby enhancing tunnel maintenance. This frame-
work comprises four main layers: data layer, ontology layer,
mapping layer, and application layer. Together, these layers
form an integrated model for multi-source heterogeneous
O&M data. The data layer focuses on categorizing tunnel
O&M data and establishing linkages with the ontology layer.
The ontology layer employs various methods to develop
ontologies for each type of maintenance data. The mapping
layer connects these ontology models through methods
based on concept similarity and local confidence. The appli-
cation layer encompasses application ontology development,
mapping and semantic query, structural health assessment,
and maintenance strategy selection. This approach substan-
tially improves decision-making in tunnel maintenance.

In the validation section, the framework’s efficacy is
tested using the Tanglang Mountain Tunnel as a case study,
followed by a comparative analysis with previous studies to
highlight its advantages. To further enhance the framework’s
accuracy, rationality, and applicability, the following future
developments are planned: 1) Implementing an ontology
automatic mapping method utilizing deep learning. Plans
include leveraging advanced natural language processing
(NLP) models to support the automatic mapping of entity
concepts across different ontologies. 2) Extending the frame-
work to additional infrastructures. This involves refining the
tunnel structural health assessment strategies and broaden-
ing their application to include other critical infrastructures,
such as bridges, highways, high-rise buildings, and beyond.
3) Future work will focus on expanding real-time monitor-
ing and responsive maintenance capabilities, thereby pro-
moting seamless integration of real-time O&M data.
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